
1 December 1998 Delphi Informant

December 1998, Volume 4, Number 12

Cover Art By: Darryl Dennis

ON THE COVER
6 MTS Development: Part I —— Paul M. Fairhurst
Mr Fairhurst introduces Microsoft Transaction Server (MTS) development
from the perspective of a Delphi programmer. And in case you haven’t
already guessed, Delphi has again made implementing Microsoft tech-
nology faster and easier than with any of Microsoft’s development tools.

FEATURES
12 Informant Spotlight
Delphi Plug-Ins — Marc Evans
Demonstrating another way to extend a Delphi application, Mr Evans
shows us how to create and employ “plug-in” DLLs. The discussion
includes creating a shell application and the Sharemem unit.

19 Algorithms
As the Crow Flies — Rod Stephens
Mr Stephens demonstrates algorithms for finding the shortest path
through a “network,” be it the best way to route e-mail through a
computer network, or the quickest way home from work.

25 DBNavigator
Delphi Database Development: Part IV
— Cary Jensen, Ph.D.
This month, Dr Jensen continues his database series by examining the
care and feeding of Delphi data modules, including when you should
use them — and when you shouldn’t.

30 Columns & Rows
Much ADO about the Web — Ron Loewy
Besides providing a step-by-step description of how to create Automation
objects that use ADO to access an application’s database, Mr Loewy shares a
working Active Server Pages example.

REVIEWS
35 SysTools 2

Product Review by Warren Rachele

39 InfoPower 4.0
Product Review by Bill Todd

43 SAMS Teach Yourself Borland Delphi
4 in 21 Days
Book Review by Warren Rachele

45 Delphi 4 Developer’s Guide
Book Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Newsline
46 From the Trenches by Dan Miser
47 File | New by Alan C. Moore, Ph.D.

2 December 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

DT Software Releases Version 5.1 of dtSearch Text Retrieval Engine

DT Software, Inc. intro-

duced version 5.1 of its
dtSearch Text Retrieval
Engine for the PC, LAN,
and Internet/intranet. This
edition makes it easier for
Windows 95/98/NT devel-
opers to link the 32-bit
dtSearch Engine to a range
of enterprise data.

The dtSearch Text Retrieval
Engine provides easy index-
ing and searching of any data
accessible using ActiveX
interfaces. The ActiveX sup-
port allows indexing of SQL
databases using Active Data
Objects, Data Access
Objects, and Remote Data
Objects. The API can also be
used to index message stores
using Collaboration Data
Objects and Web sites using
the Internet Client SDK.

The new version adds
Active Server Pages (ASP)
support, which enables
Raize Software Announce
developers to create server-
side ASP scripts to add cus-
tomized text searching fea-
tures to an Internet or
intranet site. Developers can
use Delphi, ASP, Visual
Basic, VBScript, or C/C++
to control the dtSearch
Engine and add a custom
user interface. The dtSearch
Engine provides sample code
in these languages, including
source code to a fully func-
tional, ISAPI-based Internet
search engine.

The dtSearch
Engine has
unlimited
capacity and
includes built-
in support for
parsing word
processor, data-
base, spread-
sheet, HTML,
ZIP, PDF, and
other file types.
s CodeSite 1.1
It also offers over two dozen
search options, including rel-
evancy-ranked natural lan-
guage, thesaurus, fuzzy,
and/or/not, proximity,
phrase, wildcard, phonic,
field, numeric range, and
variable term weighting.

DT Software, Inc.
Price: From US$999
Phone: (800) 483-4637 or
(703) 413-3670
Web Site: http://www.
dtsearch.com
Raize Software Solutions,
Inc. announced CodeSite 1.1,
an advanced debugging tool
that provides several enhance-
ments and Delphi 4 and
C++Builder 3 support.
The CodeSite Object, used

to send messages to the
CodeSite Viewer, defines three
new methods and one new
property.
The first method is

SaveLogFile, which allows a
developer to instruct the
CodeSite Viewer to save a log
file containing all messages
currently displayed in the
viewer. The SendDateTime
and SendDateTimeEx meth-
ods are used to send
TDateTime values to the
viewer, while the
DateTimeFormat property
is used to control how the
values appear in the viewer.
The CodeSite Viewer has

an option on the Edit menu
that allows a user to reset
the indent level. All panes in
the view implement thumb
tracking when scrolling. Cut,
copy, and paste operations
work correctly in the popup
edit window displayed when
editing an item in the message
list.

Also, the user interface of
the 16-bit version of the
CodeSite Viewer running
under Windows 3.x has been
cleaned up.
The CodeSite Message

Expert, which provides a
point-and-click interface for
constructing CodeSite mes-
sages when using CodeRush,
remembers the last set of
selected options and restores
these options the next time
the expert is displayed. The
settings are also maintained
across Delphi sessions.

Raize Software Solutions, Inc.
Price: US$79.95; free upgrade for users
of version 1.0.
Phone: (630) 717-7217
Web Site: http://www.raize.com
Dalco Announces
dbOvernet

Dalco Technologies announced
the release of dbOvernet, a

MIDAS-alternative toolset that
enables the rapid development of

multi-tier applications using
Delphi approaches and drop-

and-go component technology.
dbOvernet provides six controls

for producing thin, client-side and
plug-in, server-side applications.

Open extensibility enables the
deployment of server-side applica-

tions against any database or
data source, and the client-side
dbOClientDataset component

handles all communication and
data delivery between the server
and client data-aware controls.

Using TCP/IP socket-enabled
methods, dbOvernet deploys

applications over all transports,
including LAN, WAN, and

intranet, and provides real-time,
two-way data communication

over the Internet.
For more information, call Dalco

Technologies at (250) 769-3951,
or visit their Web site at

http://www.dbovernet.com.

http://www.dtsearch.com
http://www.dtsearch.com
http://www.dbovernet.com
http://www.raize.com

3 December 1998 Delphi Informant

ZieglerSoft Announces ZieglerCollection one Version 1.40Delphi
T O O L S

New Products
and Solutions
ZieglerSoft announced the
availability of
ZieglerCollection one
Version 1.40, which sup-
CNS Introduces The Inter
ports Delphi 1 through 4
and C++Builder 1 and 3.

ZieglerCollection one 1.40
includes 60 components and

a collection of func-
tions and routines,
including
TzMinMax,
TzBigLabel,
Tz3Dlabel,
TzAngleLabel,
TzTabListBox,
TzBitmap,
TzAnimated,
TzBackground,
Com System

Objective Releases Versi
TzSegmentClock, TzGauge,
TzSlideBar, TzFrame,
TzDivider, TzMovePanel,
TzTitleBar, TzHint,
TzShowApp, TzVerSpilt,
TzHorSplit, TzMouseSpot,
TzCalc, TzShapeBtn,
TzColorBtn, TzGradBtn,
TzBitColBtn, TzIconColBtn,
and others.

ZieglerSoft
Price: US$52 (with full source code).
Phone: +45 9811 3772
Web Site: http://www.zieglersoft.dk
on 4 of ABC for Delphi
CNS International
announced the release of
The InterCom System.

The system is a tool
intended for developers
creating multi-user network
applications.

This includes database
and Internet applications,
games, and groupware.

The InterCom System
consists of a client control,
used by the application,
and the InterCom server.

The system is based on a
Publisher-Subscriber archi-
tecture, where clients can
subscribe to “events” that
the developer defines, and
publish data to those
events.

When data is published
to an event, all clients sub-
scribed to that event are
automatically notified.
Clients can also send mes-
sages directly to other
clients, which can be locat-
ed anywhere on a LAN or
WAN.

All communication is
handled directly by the
server.

Both network bandwidth
and server usage can be
kept low, as The InterCom
System can utilize IP
Multicasting technology.

The product can be used
from various programming
environments, including
Delphi, Visual Basic, and
Visual C++.
CNS International
Price: Not available at press time.
Phone: (31) 30 2802822
Web Site: http://www.cns.nl
Objective Software
Technology Pty Ltd.
announced the release of
ABC for Delphi Version 4,
a comprehensive set of
data-navigation, presenta-
tion, and exception-han-
dling components.

ABC for Delphi Version 4
includes user interface con-
trols, such as Button Bar,
Animation Frame, Effects
Image, Shape Button,
Picture Speed Button, and
Rich Edit; floating toolbar
components; and database
controls, such as DB Tree
View, DB Rich Edit, and
Hint and Help Manager
components.
In addition, ABC for

Delphi Version 4 offers
professional dialog boxes,
including Splash Screen
and Welcome Tips.

ABC for Delphi Version 4
supports Delphi 1 through 4
and C++Builder 1 and 3.

Objective Software
Technology Pty Ltd.
Price: US$149; upgrade from version
3, US$69; ships on CD-ROM with
100MB of source code, sample pro-
grams, and run-time images for all ver-
sions of Delphi and C++Builder.
Phone: +61 2 9955 3397
Web Site: http://www.obsof.com
UnitOOPS Announces OLE
Drag and Drop Components

UnitOOPS Software
announced the UnitOOPS OLE
Drag and Drop Components,

four VCL components that allow
a Delphi application to be the

source or target of inter-applica-
tion drag-and-drop of text and
images (bitmaps or metafiles).

The components provide
Delphi developers access to

common inter-application (OLE)
drag-and-drop capabilities with

little user code. Also, they trigger
events that can be handled to

get more control over the drag-
and-drop process. Plain text, file
lists, rich text, Microsoft HTML

format, URL links, bitmaps, DIBs,
and metafiles can be accepted,

encapsulated in Delphi-style
objects (e.g. graphical content is

always in a TPicture, text is
always in a Delphi string or

TStringList).
Applications using the compo-

nents can run in Windows 95/98
and Windows NT 4 and higher.

For more information, call
UnitOOPS at (203) 891-8333,

or visit their Web site at
http://www.pobox.com/

~unitoops.

http://www.zieglersoft.dk
http://www.cns.nl
http://www.pobox.com/~unitoops
http://www.pobox.com/~unitoops
http://www.obsof.com

4 December 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Brickhouse Launches Brickhouse Object Architecture

Brickhouse Data Systems,

Inc. launched its Brickhouse
Object Architecture (BOA)
technology to provide
object-oriented development
teams with an application
development framework for
deploying scalable n-tier
business systems.

BOA structures applica-
tions so that the business
objects are physically sepa-
rated from the front-end
application. Developers can
select tools and deliver busi-
ness applications more effi-
ciently, with BOA wrapping
everything together.

The Business Object
Framework includes a
Business Object Class
Library, a Business Object
Factory that acts as an
object broker to interact
with key system compo-
nents, and a Business
Object Wizard to help cre-
ate business objects and link
them to database tables.

The Business Forms
Elevate Software Announ
Framework is a
set of business
forms and com-
mon dialog boxes.

Visual Business
Components are “business-
object aware” versions of data
controls, allowing presenta-
tion of business object data
using a standard Windows
user interface.

The Business Explorer is
modeled around the
Microsoft Windows Explorer,
allowing users to explore busi-
ness objects, their relation-
ships, and functionality.

BOA is available for use
with DCOM and is being
extended to support tech-
ces DBISAM Database Sys
nologies such as CORBA,
Microsoft Transaction
Server, and IBM MQSeries.
While BOA includes a foun-
dation database model, busi-
ness objects can be connect-
ed to existing production
databases.

Brickhouse Data Systems, Inc.
Price: From US$50,000; component
pricing and additional project services
are available.
Phone: (732) 764-4100
Web Site: http://www.
brickhouse.com
tem for Delphi

Elevate Software announced

the first release of DBISAM
Database System for Delphi
(all versions), a proprietary
database system designed to
merge the best features of local
database formats available for
Delphi. DBISAM is targeted
at Delphi developers writing
applications for single-user
and multi-user use with heavy
distribution requirements
(such as shareware or down-
loadable software), or for
small, in-house installations
on a LAN.

DBISAM offers transparent
single-user and multi-user
usage; built-in repair facilities;
a utility for transferring data
from Paradox, dBASE, and
FoxPro formats; a utility for
browsing, restructuring,
updating, and searching data
files; complete BLOB support,
including configurable block
sizes; transactions; primary
and secondary indexes; com-
plete filter support; in-memo-
ry data files with support for
streaming; partial index key
searches and ranges; ranges
with accurate record counts;
and numerous other features.

DBISAM compiles into an
application’s EXE file and has
a footprint of around 200KB.

Elevate Software
Price: US$199
Phone: (800) 699-6395
Web Site: http://www.
elevatesoft.com
Kinetic Announces
CrackerJax

Kinetic Software Development
Inc. announced the CrackerJax
for Delphi suite. CrackerJax is a
Delphi IDE extension that pro-
vides developers with a method

of altering the layout of their
Delphi source code.

CrackerJax features include
over 200 formatting options; the
ability to store and use multiple
option configurations; the ability
to hook directly into the Delphi
IDE; fast execution; support for
all 32-bit Delphi installations;
and a built-in interface that

allows the developer to make
enhancement requests or report

problems encountered via e-mail.
For more information, call

(888) 893-7100 or (423) 899-
8980, or visit the Kinetic Web

site at http://www.
kineticsoftware.com.

http://www.brickhouse.com
http://www.brickhouse.com
http://www.elevatesoft.com
http://www.elevatesoft.com
http://www.kineticsoftware.com
http://www.kineticsoftware.com

5 December 1998 Delphi Informant

News
L I N E

December 1998

Inprise Announces
Additional Stock Buy-
Back Program

Web Broker Available for Delphi 4

Inprise Announces
DCE-CORBA Bridge
Scotts Valley, CA — Web
Broker technology, which
enables Delphi 4 developers
to deliver high-speed data-
base applications over the
Web, is available for cus-
tomers of select Delphi 4
products.

With Delphi 4 Web
Broker, developers can cre-
ate high-speed, high-
throughput, Web-delivered,
HTML-based data applica-
tions. WebServer applica-
tions are Web server exten-
sions that bind directly to
ISAPI and NSAPI, Web
server interfaces from
Microsoft and Netscape,
respectively.

WebBridge allows develop-
ers to program to a com-
mon API for NSAPI and
ISAPI. This flexibility pro-
tects a developer’s code base
as the competing Internet
standards evolve, allowing
the developer to concentrate
on implementing business
solutions regardless of the
back-end Web server.
Philips Uses VisiBroker t
WebModules centralize
the dispatching of Web
client requests, the respons-
es for the request, and the
creation of HTML content.

WebModules visually con-
trol multiple requests com-
ing into a Web sub-site,
resulting in full client/serv-
er functionality over the
Web.

WebDispatcher simplifies
the task of handling Web
server application event
handling. WebDispatcher
works with existing query
and table components to
produce CGI and HTML
applications. Four addition-
al components produce Web
content for queries, tables,
CGI applications, and sim-
ple HTML.

The Web Broker technolo-
gy is included in Delphi 4
Client/Server Suite. Delphi
4 Professional customers can
purchase Web Broker for
US$199.95. Web Broker
does not work with Delphi
4 Standard.
o Make MIRACLE
Scotts Valley, CA — Inprise
Corp. announced that its
board of directors has autho-
rized an additional stock buy-
back program. The board’s
resolution authorizes Inprise
to repurchase up to 10 per-
cent of the company’s out-
standing shares of common
stock on a fully diluted basis,
or approximately 5,900,000
shares, inclusive of the
1,000,000 share repurchase
completed on August 10,
1998.
New York, NY — Inprise
Corp. announced the Inprise
DCE-CORBA Bridge, a
secure integration solution
that allows corporations to
Web-enable their existing
DCE-based applications for
electronic commerce.
The Inprise DCE-CORBA

Bridge provides a smooth
interface between CORBA
clients and DCE servers. It
leverages the distributed,
open-architecture, and stan-
dard protocols of the
Internet to build multi-tier,
client/server intranet and
extranet applications that can
operate in heterogeneous
infrastructures, using multi-
ple hardware platforms and
languages.

Global organizations that
have based business-critical
enterprise applications on
Inprise’s DCE and CORBA
solutions include Bank of
America, Barclaycard,
Charles Schwab & Co.,
Credit Suisse, Daiwa
Securities Ltd., First National
Bank of Chicago, First
Union Bank, Merrill Lynch,
NationsBank, Sanford
Bernstein & Co., State Street
Bank, and T. Rowe Price.
San Francisco, CA —
Philips Medical Systems,
Care Flow Net, Inc., and
Baptist Health developed
MIRACLE (Medical
Information Retrieval
Application for Clinical
Enhancement) for the
Baptist Health Systems of
South Florida, a not-for-
profit healthcare organiza-
tion composed of five hos-
pitals, multiple outpatient
clinics, and physicians’
offices. Designed to stream-
line patient services, the
MIRACLE is being built
around Inprise Corp.’s
VisiBroker CORBA object
request broker technology.
MIRACLE provides care-
givers tightly controlled
access to medical data any-
where at any time.
The main challenge of the
Baptist Health Systems
project was integrating the
wide array of data sources,
data types, and complex
workflow patterns inherent
in the healthcare industry,
without requiring a single
entity to have the broad
domain knowledge needed
to manage this variety of
clinical data from all
sources.

MIRACLE allows health-
care workers to store and
access relevant information
quickly. In addition, hospi-
tal IT departments save
time and resources by not
having to constantly correct
the messaging and replica-
tion errors common with
previous, non-CORBA
based solutions.
Raize Software Acquires
VisualPROS

Raize Software Solutions, Inc.
announced that it has purchased

all rights to the VisualPROS
component set from Shoreline
Software for an undisclosed
amount. The set includes 10

native VCL controls that make it
easier for developers using

Borland Delphi to create profes-
sional applications. Raize will
integrate the components into

version 2.0 of its Raize
Components product.

For more information about
Raize Components, visit the

Raize Software Solutions Web
site at http://www.raize.com.

For more information on
Shoreline Software, call (800)

261-9198 or (860) 870-5707,
or visit

http://www.shoresoft.com.

http://www.raize.com
http://www.shoresoft.com

6 December 1998 Delphi Informant

On the Cover
MTS / Delphi 4

By Paul M. Fairhurst

MTS Development
Part I: Unpacking Microsoft Transaction Server
The Client/Server edition of Delphi 4 has brought Delphi firmly into the dis-
tributed computing arena. We’ve had no shortage of tools, techniques, and

models over the decades for developing applications: thin client, fat client,
event-driven, object-oriented, and now distributed components. All strove for
the “Holy Grail” of computing — 100 percent code reuse, 100 percent fault
tolerance, an easy application upgrade path when things change, and maxi-
mum use of precious resources. Whether the distributed computing model will
succeed is anybody’s guess. However, we’re getting closer to the way complex
systems such as the human body function: small, dedicated components work-
ing in cooperation to serve a greater purpose. Copying nature can’t be too
bad a thing, considering how long it’s had to get things right!
In this series of articles, I’m going to explore
how Delphi empowers you with the ability to
create distributed applications using
Microsoft Transaction Server (MTS), and
how it has again made implementing
Microsoft technology easier than with any of
Microsoft’s development languages.

The Problem
The problem with Information Technology
nowadays is its complexity. Our minds can
only deal with a limited amount of complexi-
ty. To remedy this, we break large problems
into small chunks that we can more easily
understand. Software development has tradi-
tionally broken applications into modules,
classes, and DLLs. However, the close imple-
mentation dependencies that still exist have
left us unable to de-couple parts of an appli-
cation, making upgrading a difficult task.

The solution to this is the software compo-
nent. Each component performs a specific
task, and access to this functionality is
through well-specified interfaces. Because an
interface can’t change once it’s specified, the
dependency between a component and its
client is reduced. Furthermore, any compo-
nent can be replaced by another with a dif-

On the Cover
ferent implementation, as long as it supports the same set of
interfaces. This allows the developer to replace parts of an
application with newer functionality, guaranteeing that all
component clients will operate correctly, which would lead to
an easier upgrade path for an application.

Once you’ve de-coupled components from their clients, it
doesn’t take a genius to take the next step of moving these
components onto powerful, fault-tolerant servers that can sup-
port hundreds or thousands of client requests. Furthermore,
components can be placed near the data sources they’ll act
upon, reducing network traffic and lead times. Reliability is
also increased because more than one server can support a
component. If one server fails, another takes over, and the
client application isn’t any worse off.

In short, the distributed model is better for clients,
servers, and developers. The days of monolithic applica-
tions holding on to precious database connections and
downloading large amounts of data over company net-
works are numbered.

The Solution
So where does Delphi fit into this model? On the PC, you
have two main players in the software component and ser-
vices arena: the Common Object Request Brokerage
Architecture (CORBA), and the Component Object
Model (COM). CORBA is an open specification for soft-
ware components developed by the Object Modeling
Group (OMG). It’s operating-system independent, and
offers no “out-of-the box” library code to help you. COM
is similarly a specification for software components, but is
also an implementation that’s currently geared toward the
Windows family of operating systems, and thus has oper-
ating system support built in. It’s a binary specification,
which makes it language-independent and capable of oper-
ating cross-platform.

Delphi has supported COM since version 3, although it was
somewhat limited in its threading support. Delphi 4 has
remedied this, and now includes comprehensive support for
developing component-based applications with COM, which
is the basis for other technologies, such as OLE, ActiveX, and
Automation.

Now, COM allows transparent access to COM components
running on other machines via Distributed COM (DCOM).
By transparent, I mean that changes to the client applications
of the COM component aren’t necessary when the compo-
nent is moved from the local machine to another machine on
the network.

Distributed computing with DCOM is powerful stuff, but
it brings with it a couple of inherent problems. First,
Microsoft NT Server can’t effectively host tens of COM
objects being accessed by hundreds of clients. If each client
created a component on the server, which then opened a
connection to a database server, the burden on the server
would be too great. (Not to mention the issue of database
7 December 1998 Delphi Informant
server licenses!) This is a scalability problem, and COM
components don’t naturally scale.

The second problem has to do with transactions. If you have
business components spread over many machines, and you
instruct every component to save its work, what happens if
one fails? You need all the work to complete, or not at all; in
short, you need a transaction. To support this, you would
have to construct every component to be transaction-aware,
not to mention get involved with distributed transactions
across many machines. As a developer, you have more impor-
tant functionality to implement than this!

Microsoft soon realized these problems and set about creating
an infrastructure for COM components so you could write
them as if you were writing a component for one client,
while not having to worry about transactions. Any resources,
such as database connections your components use, would be
pooled and recycled for use by other components, freeing
them up and instantly providing scalability to COM compo-
nents running on NT Server. In other words, it would pro-
vide the “plumbing” for your components, freeing you
from many of the responsibilities of writing distributed
applications and moving the complexity to where it
belongs — the operating system.

Microsoft succeeded in creating this infrastructure, and it has
become so important to NT Server that many other operat-
ing system services now require it in order to function. They
named it Microsoft Transaction Server (MTS).

The MTS Philosophy
MTS was originally sold as an additional product for NT
Server. Microsoft quickly realized its importance in enabling
NT Server to scale its way into enterprise markets, so it’s now
available for free as part of the NT 4.0 Option Pack. This pack
ships with NT Server 4.0, and is freely downloadable from
Microsoft’s Web site. Be warned, though: It’s around 87MB in
size. MTS can also be hosted by NT Workstation and
Windows 95 running DCOM. These versions are only 27MB
in size. Alternatively, you can order the NT 4.0 Option Pack
CD-ROM from Microsoft.

To allow NT scale to support many simultaneous clients,
components running under MTS need to be written to sup-
port the MTS way of doing things. This means “surgical
strike” components. A component needs to get in, do the
job, and get out as quickly as possible. It should hold no
resources once it’s completed its work. Obviously, there are
circumstances when it isn’t possible to do this, or when it’s
actually more effective to hold on to resources between client
calls. We will look at such cases in a later article. For now,
we’ll take a look at how MTS objects operate before moving
on to writing our first MTS component.

Anatomy of an MTS Object
MTS controls and manages components by activating when
they’re needed by clients, and deactivating them when they’re
not. This is called Just In Time (JIT) activation and As Soon

Figure 1: Displaying installed MTS packages in the MTS Explorer
(AKA Microsoft Management Console).

Figure 2: The MTS Object icon appears on the Multitier tab of
Delphi’s New Items dialog box.

On the Cover
As Possible (ASAP) deactivation.

When a client requests the use of a component, MTS
usually won’t create an instance of the component.
Only when the client actually calls a method (or prop-
erty) of the component does MTS instantiate it. What
the component does when the call is finished deter-
mines the scalability of the component and what MTS
does with it.

If the component has finished its work, or if it can’t
complete its work, it notifies MTS, which then deacti-
vates it. Deactivation isn’t the same as destruction.
Deactivation means the component loses all informa-
tion held about the client. On the next call into the
component by any client, it’s completely initialized.
MTS may keep the component in a deactivated state,
or destroy it.

Unless you specifically request otherwise, the compo-
nent will be deactivated by MTS when a call into it has
finished. When the client (or a new client) requests its
services again, it’s quickly reactivated, which is much
quicker than creating it from scratch. When a compo-
nent is reactivated, it knows nothing about the last
client to access it, and doesn’t maintain internal state
between multiple interactions with a client. Such a
component is said to be “stateless.” A stateless compo-
nent is a “surgical strike” component and scales better
than a stateful component.

A “stateful” component holds internal state between
interactions, and MTS can’t deactivate it when a
method call on the component ends until you specifi-
cally say it can. The component will remain active in
server memory and hold on to potentially valuable
resources (e.g. database connections) between method
calls. This is obviously less efficient, but may be desir-
able if, for instance, the component is holding a con-
nection to a resource that takes a long time to con-
nect with.
8 December 1998 Delphi Informant
Another important point is that components must be
in-process DLLs. You don’t need to worry about this,
though; Delphi’s wizards take care of it for you. It’s
important, however, if you’re considering moving
existing COM component functionality to MTS.
That’s enough theory for now. Let’s get on with some
practice.

MTS Installation
I’ll assume you’ve installed MTS on a machine. To keep
things simple for now, you need to have Delphi 4
installed on the same machine. This means the clients
we create will call the MTS components locally, rather
than over a DCOM network connection, which would
add another level of complexity that we don’t want
right now. It also means we can use Delphi’s friendly
automatic installation of your components into MTS,
which saves us some grunt work. Ideally, you should be
running Windows NT because it has a more sophisti-
cated security capability (which we’ll use in a later arti-
cle). Delphi should be installed after MTS has been
installed. If this isn’t the case, then you need to take
some additional steps, as detailed in section 9 of Delphi
4’s Readme.txt file.

Fire up the MTS Explorer, and open the \My
Computer\ Packages Installed folder to see all the pack-
ages installed in MTS (see Figure 1). A package is a set
of components that performs related functions. All
components in a package run in the same MTS server
process, which isolates faults to the package level.
Security credentials are checked when a client calls into
a component in a package, but not when a component
calls another component in the same package. This
means that components in a package “trust” each other,
and this is said to be a “trust boundary.”

Depending on the options you selected during the
MTS installation, you may see Microsoft’s “Sample
Bank” and “Tic-Tac-Toe” packages in the Explorer.

On the Cover

Figure 3: The Delphi 4 Project Manager displaying the demon-
stration projects for this article.

IAccountTypes = interface(IDispatch)
['{ 95752307-14E5-11D2-A49F-00A0C929E2FF }']
function GetAccountType(AcctTypeID: Integer;

var AccountName: WideString; var InterestRate: Single;
var DefMinBalance: Single; var ResultStr: WideString):
Integer; safecall;

function AddAccountType(var AcctTypeID: Integer;
const AccountName: WideString; InterestRate: Single;
DefMinBalance: Single; var ResultStr: WideString):
Integer; safecall;

end;

Figure 4: The IAccountTypes interface, which is implemented by
the AccountTypes component.
The MTS Programmer’s Guide makes use of these com-
ponents in its examples, and you may find them handy
to test your installation of MTS with the sample client
applications that ship with MTS. You’ll also see the
“System” package, which is the core of MTS. We’ll visit
this in a later article when we talk about security.

The Component
When you select File I New in Delphi, you’re presented with a
multi-tabbed dialog box that gives access to application wizards.
To develop an MTS component in Delphi, you simply create a
new ActiveX Library (from the ActiveX tab), then add new
MTS components with the MTS Object icon on the Multitier
tab (see Figure 2). Each component will reside in the same DLL,
but they can be added to MTS independently if you wish.

The example projects in this article show the basics of
MTS component development. Throughout this series of
articles, we’ll build components and client applications
with a common theme. I’ve chosen the banking theme. I
know it isn’t original, but it serves to illustrate many of the
concepts you need to know. Besides, almost everyone has a
bank account, and can relate to money quite easily. I could
use widgets and gadgets, but I prefer to keep things simple
and intuitive.

We’ll create a fictitious company called “DelphiBank” and
develop components and a client application that accesses
and creates information about accounts, account types, cus-
tomers, and customer transactions. We will implement secu-
rity on our components to prevent unauthorized access to
the bank’s records, and use transactions to ensure integrity in
our database.

There are two projects accompanying this article (see
Figure 3). DelphiBankServer contains the MTS server
DLL (DelphiBank), which currently contains only one
component: AccountTypes. The other project,
DelphiBankClient, is the client that will request services
from our component and display the results on a form.
The AccountTypes component performs operations on the
various types of accounts that “DelphiBank” operates. It’s
rudimentary, with no database access, but it demonstrates
9 December 1998 Delphi Informant
some important concepts. (These projects are available for
download; see end of article for details.)

Figure 4 shows the IAccountTypes interface, which is imple-
mented by the AccountTypes component. This was generated
function TAccountTypes.GetAccountType(AcctTypeID: Integer;
var AccountName: WideString;
var InterestRate, DefMinBalance: Single;
var ResultStr: WideString): Integer;

const
cMethodName: string = 'AccountTypes.GetAccountType';

begin
Result := cATSuccess;

try
case AcctTypeID of

1 :
begin { Current Account Type. }

AccountName := 'Current Account';
InterestRate := 0.1;
DefMinBalance := -100;

end;
2 :

begin { Gold Account Type. }
AccountName := 'Gold Account';
InterestRate := 1.2;
DefMinBalance := 1000;

end;
3 :

begin { Savings Account Type. }
AccountName := 'Savings Account';
InterestRate := 4.9;
DefMinBalance := 500;

end;
4 :

begin { Savings Plus Account Type. }
AccountName := 'Savings Plus Account';
InterestRate := 5.9;
DefMinBalance := 5000;

end;
else

raise Exception.Create('Unknown account type.');
end;

ResultStr := cMethodName + ' - successful';
SetComplete; { We're done. }

except
on E: Exception do begin

{ Ooops. }
Result := cATFailure;
ResultStr :=

cMethodName + ' exception - ' + E.Message;
SetAbort; { Cannot continue. }

end;
end;

end;

Figure 5: The GetAccountType function.

Figure 6: Installing objects into MTS from Delphi.

Figure 7: The MTS Explorer with the DelphiBankServer package
installed.

On the Cover
by Delphi’s Type Library Editor in DelphiBankServer_TLB.
You can see that we have two functions that read and add an
account type. Currently, we’ll only implement reading because
we have no database in which to store information, and we
don’t want to make our component stateful. Both functions
return an integer to indicate success or failure (zero for suc-
cess), and a result string we can use to provide an English
description of what occurred (useful for debugging purposes).

Figure 5 shows the GetAccountType function found in
AccountTypes. Normally, the account information would be
looked up in a database, but here, we hard code it. The most
interesting thing about this piece of code are the calls to
SetComplete and SetAbort. These functions inform MTS that
the component’s work has succeeded or failed. SetComplete is
called when the component has successfully finished its work
to let MTS know its work can be committed. On the other
hand, SetAbort informs MTS that its work can’t be commit-
ted, and that the transaction in progress — if any — can’t
succeed. Either way, MTS will deactivate the component
upon exiting this method.

Where have these functions come from? Every object host-
ed by MTS has an associated “object context.” The object
context provides information such as whether the object is
executing within a transaction and, if so, the identity of
the transaction.

I’ll discuss the object context more thoroughly next month
when I discuss transactions. I will mention, though, that
you can access it with GetObjectContext from Delphi’s Mtx
module, which returns an IObjectContext interface. This
contains (among other things) SetComplete and SetAbort.
For now, let’s install the component into MTS.

Installing the Component
Open the DelphiBankServer project in Delphi and build it;
open the project group, then select DelphiBankServer in
the project manager and click the Activate speed button to
make this the current project; then build it. Now select
Install MTS Objects from the Run menu (as I mentioned ear-
lier, Delphi must be installed on the same machine as MTS
for this to work). Delphi presents a list of components to
10 December 1998 Delphi Informant
install into MTS. We only have one (AccountTypes), and
because we haven’t installed it before, Delphi doesn’t know
which package to install it into (all components must
reside in a package).

Click the check box next to AccountTypes and a dialog
box will appear. You need to select the Into New Package
page and type in a name for the package. We’ll call it The
Delphi Bank. When you click OK, you should see the
screen shown in Figure 6. Click OK again, and Delphi will
do its magic and install your component into MTS via
OLE Automation.

If you fire up the MTS Explorer (refreshing the “Packages
Installed” if necessary by right-clicking and selecting Refresh),
you should see The Delphi Bank package. If you open it and
open the Components directory, you should see the
DelphiBankServer.AccountTypes component (see Figure 7).
Have a look at the properties of the package and component
by right-clicking on them and selecting Properties. In particu-
lar, go to the Advanced tab of the Properties page for The
Delphi Bank package. You’ll see the Server Shutdown Process

time is set to 3 minutes. While developing components, this
is best set to 0. If you don’t do this, you’ll have problems
building the component in Delphi because MTS will keep
the DLL locked for three minutes every time a client calls it
before eventually releasing the server DLL. Delphi can’t com-
pile a new DLL while it’s locked by MTS.

The Client
I want to make an important distinction about clients in
MTS. In MTS, a client is an MTS component using another
MTS component. An application running outside of the
MTS environment that calls MTS components is called a
base client. The second project accompanying this article
(DelphiBankClient) is a base client — a Delphi application
that imports the type library for our component. Build it in
Delphi, and run it on the machine where MTS is installed. If
you opened the project group, select DelphiBankClient in
the project manager, click the Activate speed button to make
this the current project, then run it.

On the Cover

Figure 8: The client application in action.
While it’s running, you can select an account type with the
combo box displayed. When you do, a call will be placed
to the AccountTypes component, which will then run
inside MTS. You should now see something like Figure 8. You
can select the four supported account types and one invalid
one. The first time you select an account type, there will be a
delay while MTS creates the component and the result comes
back to the client.
11 December 1998 Delphi Informant
Open the MTS Explorer and select the \Components folder
under The Delphi Bank package. Now select View | Status

View from the toolbar. Make it so you can see the window
while you’re selecting an account type. You’ll notice the
DelphiBankServer.AccountTypes object is listed and that
under the Objects column is a 1, signifying that one instance
of this object is being accessed by a base client. (If you run
more than one copy of the base client application, you’ll see
this number rise accordingly.) Now select the \Transaction
Statistics folder, and watch how transactions are being com-
mitted and aborted with the calls to SetComplete and SetAbort.

Figure 9 shows a snippet of code from the base client that
responds to the combo box of account types being changed.
First, if the object hasn’t been created already, it’s done so with
the CoAccountTypes.Create class function that Delphi creates in
the type library module. If this succeeds, we get an IAccountTypes
interface back on the object with which we can make calls. We
make a call to GetAccountType, check the result code, and display
the results accordingly. Presto! We have a normal Delphi applica-
tion using the services of an MTS component.

One final point before I wrap up this article: Try commenting
out the call to SetComplete and looking at the “Status View”
when you run the base client. You should see a difference.
The Activated column will show 1, meaning that the object
hasn’t been deactivated and has remained active. This would
happen if you had a stateful component as well. Only when
you close the base client and the object is released in
TFrmDelphiBankClient.FormDestroy will the object deactivate
and be released by MTS.

Conclusion
Make no mistake about it, MTS is an important piece of
technology for Windows developers, and Delphi has great
support for it. I’ve covered a lot of theory in this article,
which I believe is necessary for you to understand the
mechanics of developing for MTS.

Next month, we’ll look at database connectivity in compo-
nents. We’ll see how the new BDE supports MTS transac-
tions that allow us to roll back database changes, and see how
it supports the pooling of database connections for improved
scalability. ∆

The projects referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\DEC\DI9812PF.

Paul M. Fairhurst is a First Class Computer Science graduate of Sheffield
University, England and freelance consultant/developer specializing in
client/server and multi-tier database development. He is currently developing
information systems for BBC Television and Radio in London. You can contact
him at paul@c-s-c.demon.co.uk.
procedure TFrmDelphiBankClient.CbAccountTypeChange(
Sender: TObject);

const
cUnknownStr : string = '?';

var
AccountName : WideString;
InterestRate : Single;
DefMinBalance : Single;
ResultStr : WideString;
ResultCode : Integer;

begin
{ Query the AccountTypes component about this account. }
if not Assigned(AnAccountTypes) then

{ Class function from DelphiBankServer_TLB. }
AnAccountTypes := CoAccountTypes.Create;

{ If we got here then the call succeeded. }
try

ResultCode := AnAccountTypes.GetAccountType(
CbAccountType.ItemIndex+1, AccountName,
InterestRate, DefMinBalance, ResultStr);

if ResultCode = 0 then
begin

{ ...Display results... }
end

else
raise Exception.Create(ResultStr); { Failure. }

except
on E: Exception do begin

{ ... }
end;

end;
end;

procedure TFrmDelphiBankClient.FormDestroy(
Sender: TObject);

begin
{ Release the AccountTypes component. Normally this would

be done when work has finished on the component, not
here. However, I placed it here so you could see the
component being used in MTS and released when the
client closes. }

AnAccountTypes := nil;
end;

Figure 9: Code from the base client that responds to the combo
box of account types being changed.

12 December 1998 Delphi Informant

Informant Spotlight
Delphi 3, 4 / Plug-ins

By Marc Evans

Figure 1: The p
Delphi Plug-Ins
Creating, Debugging, and Using Application Extensions

Have you ever used Adobe Photoshop? If so, you’re familiar with the con-
cept of plug-ins. For the uninitiated, a plug-in is simply a piece of code

that is supplied externally to the application (for instance, in a DLL). The distinc-
tion between a plug-in and a normal DLL is the ability of the plug-in to extend
the capabilities of the parent application. For example, Photoshop is, by itself,
not capable of a great deal of image manipulation. The addition of plug-ins
gives it the capability to produce blurs, smears, and all manner of strange
effects, none of which are present in the parent application.
This is fine for a graphics program, but why
go through the effort of producing a busi-
ness application that supports plug-ins?
Suppose, for example, that your application
produces some reports. You know the cus-
tomer is going to keep asking for updates or
new reports to be added. You could use an
external report generator such as
ReportSmith — an inelegant solution,
requiring extra files to be distributed and
extra training for the users. You could also
use QuickReport, but this leads to a version
control nightmare if you have to rebuild the
application each time a font changes.
lug-in test shell.
You could use it, however, as long as you
build the report into a plug-in. Want a
new report? No problem; simply install a
DLL and the application will see it the
next time it’s started. Another example
could be an application that processes data
from an external device, such as a bar code
scanner. You want to give the end users
some choice, so you need to support half a
dozen devices. By simply writing each
device interface routine as a plug-in, you
have ultimate flexibility without changing
your parent application.

Getting Started
It’s important to know what type of func-
tionality your application will need to
expand upon before writing any code. This
is because the plug-ins interact with the
parent application using a specific inter-
face, which you will define according to
your needs. In this article, we will build
three plug-ins that illustrate some of the
ways a plug-in can interact with a parent
application.

We’ll construct our plug-ins as DLLs.
Before we do this, however, we must build
a shell application to load and test them.
Figure 1 shows our test application with
the first plug-in loaded. This first plug-in
doesn’t do very much. In fact, all it does is
return a string describing itself.

Informant Spotlight

{ Iterate the application directory looking
for plug-in files. }
procedure TfrmMain.LoadPlugins;
var

sr: TSearchRec;
path: string;
Found: Integer;

begin
path := ExtractFilePath(Application.Exename);
try

Found := FindFirst(path + cPLUGIN_MASK, 0, sr);
while Found = 0 do begin

LoadPlugin(sr);
Found := FindNext(sr);

end;
finally

FindClose(sr);
end;

end;

Figure 2: Finding plug-ins.

{ Load the specified plug-in DLL. }
procedure TfrmMain.LoadPlugin(sr: TSearchRec);
var

Description: string;
LibHandle: Integer;
DescribeProc: TPluginDescribe;

begin
LibHandle := LoadLibrary(Pchar(sr.Name));
if LibHandle <> 0 then
begin

DescribeProc := GetProcAddress(LibHandle,
cPLUGIN_DESCRIBE);

if Assigned(DescribeProc) then
begin

DescribeProc(Description);
memPlugins.Lines.Add(Description);

end
else

begin
MessageDlg('File "' + sr.Name +
'" is not a valid plug-in.',

mtInformation, [mbOK], 0);
end;

end
else
begin
MessageDlg('An error occurred loading the plug-in "' +

sr.Name + '".', mtError, [mbOK], 0);
end;

Figure 3: Loading plug-ins.

Informant Spotlight
Nevertheless, it illustrates an important point — the appli-
cation will run whether the plug-in is present or not. If the
plug-in is not there, it will not be reported in the list of
installed plug-ins, but the application will continue to
function normally.

The only things that differentiate our plug-in shell from a
normal application are the addition of the Sharemem unit to
the uses clause of the project source, and the code to load
the plug-in files. The Sharemem unit is required for any
application that passes string parameters between itself and a
child DLL. It’s an interface to Delphimm.dll (supplied with
Delphi). To test this shell, the Delphimm.dll file will have to
be on the path, or copied into the application directory from
the \Delphi 3\Bin directory. This DLL will also have to be
distributed with the final application.

The plug-ins are loaded into this test shell via the
LoadPlugins procedure, called in the FormCreate event of
the main window and displayed in Figure 2. This proce-
dure iterates the application directory using the FindFirst
and FindNext functions, looking for plug-in files. When a
file is found, it’s loaded using the LoadPlugin procedure
listed in Figure 3.

The LoadPlugin procedure demonstrates the heart of the
plug-in mechanism. First, the plug-in is written as a DLL.
Then, it is dynamically loaded using the LoadLibrary API
function. Once the DLL has been loaded, we need a way of
accessing the procedures and functions it contains. The API
call, GetProcAddress, provides this mechanism, returning a
pointer to the requested routine. In this simple demonstra-
tion, the only routine contained in the plug-in is a proce-
dure named DescribePlugin, specified in the constant
cPLUGIN_DESCRIBE. (The case of the procedure name is
important; the name passed into GetProcAddress must exact-
ly match the name of the routine in the DLL.) If the
requested routine was not found in the DLL,
GetProcAddress returns nil, allowing the return value to be
tested using the assigned function.
13 December 1998 Delphi Informant
To store a pointer to a function in a useful manner, it’s neces-
sary to create a special type for the variable that’s used. Notice
that the return value of GetProcAddress is stored in a variable,
DescribeProc, which is of type TPluginDescribe.
TPluginDescribe is defined as:

type

TPluginDescribe = procedure(var Desc: string); stdcall;

The stdcall directive is used because the procedure resides in
a DLL, which was built using the standard calling convention
for all the exported routines. This procedure takes a single var
parameter, which will contain a description of the plug-in
when the procedure returns.

To call the procedure we’ve just found, simply use the name of
the variable holding the address as the procedure name, fol-
lowed by any parameters. Using our example, the statement:

DescribeProc(Description)

will call the descriptive procedure found in the plug-in and
fill the Description variable with a string describing the plug-
in functionality.

Building the Plug-in
Now that we’ve created a parent application, it’s time to
build the plug-in we want to load. The plug-in files will be
standard Delphi DLLs, so start a new DLL project from the
Delphi IDE and save it. Because the exported plug-in func-
tion will use a string parameter, place the Sharemem unit as
the first unit in the project’s uses clause. The listing in
Figure 4 shows the project source for our sample plug-in.

uses
Sharemem, SysUtils, Classes,
main in 'main.pas';

{$E plg.}

exports
DescribePlugin;

begin

end.

Figure 4: The sample plug-in project source.

unit main;

interface

procedure DescribePlugin(var Desc: string);
export; stdcall;

implementation

procedure DescribePlugin(var Desc: string);
begin

Desc := 'Test plugin v1.00';
end;

end.

Figure 5: The main unit for the sample plug-in.

Informant SpotlightInformant Spotlight

Figure 6: A revised version of the shell application with both plug-
ins loaded.
It’s worth noting that although the plug-in is a .DLL file, it
doesn’t need the .DLL extension. In fact, there’s a good reason
for changing it: When the parent application looks for files to
load, it can use a specific file mask. If the extension is left as
.DLL, the parent will have to try to load every .DLL in the
project directory, looking for valid plug-ins. By changing the
extension to something else (our samples use *.plg), you can
be reasonably sure the application is only going to be loading
relevant files. The compiler directive $E will accomplish this
change, or the extension can be set from the Application page
on the Project Options dialog box.

The code for the first sample plug-in is simple. Figure 5
shows the code contained in a new unit. Note that the
DescribePlugin prototype is identical to that of the type
TPluginDescribe in the shell application, with the addition
of the export keyword to specify that the procedure will be
exported. The name of the exported procedure also appears
in the exports section of the main project source (shown
in Figure 4).

Before this plug-in can be tested, it has to be copied into the
main application directory. The easiest way of doing this is to
create all the plug-ins in subdirectories of the main directory,
and specify ..\ as the output path for the project. (The
Directories/Conditionals page of the Project Options dialog
box will allow this to be changed.)

Debugging
This is a good time to introduce one of the nicer features of
Delphi 3: The ability to debug DLLs from within the IDE.
An application is specified as the Host application in the Run
Parameters dialog box in the DLL project. This is the path to
the application that will call the DLL. (In our case, this is
the path to the test shell we’ve just created). Then you can
set breakpoints in the DLL code and press 9 to run as you
would with a regular application. Delphi will execute the
specified host application and — assuming the DLL is com-
piled with debug information — drop you into the debugger
at your breakpoint inside the DLL code.

Extending the Parent
This simple plug-in is fine, but it doesn’t do anything use-
ful. The second example will rectify this. The aim of this
plug-in is to add an item to the main menu of the parent
application. This menu item, when clicked, will execute
some code inside the plug-in. Figure 6 shows a revised ver-
sion of the shell application with both plug-ins loaded. In
this version of the shell, a new menu item, named Plug-in,
has been added. The plug-in will attach a menu item to
this at run time.

To accomplish this, we must first define a second interface
into the plug-in DLL. The existing DLL only exports one
14 December 1998 Delphi Informant
procedure, DescribePlugin. The second plug-in will introduce
a procedure named InitPlugin. Before the procedure can be
seen by the main application, however, the LoadPlugin pro-
cedure must be modified to take account of it.

The code in Figure 7 illustrates the revised procedure. As
you can see, after the first GetProcAddress call to find the
description procedure, another call to GetProcAddress has
been added.

This time, we’re looking for the constant cPLUGIN_INIT,
which is defined as:

Informant Spotlight
const
cPLUGIN_INIT = 'InitPlugin';

The return value is stored in a variable of type TPluginInit,
which is defined as:

type
TPluginInit = procedure(ParentMenu: TMainMenu); stdcall;

When the InitPlugin procedure is executed, the main menu
of the parent application is passed into it as a parameter. The
procedure can then modify this menu as it pleases. Because
all the return values of GetProcAddress are tested with assigned,
this new version of the LoadPlugin procedure will still load
the first plug-in, which did not contain the InitPlugin proce-
dure. All that will happen is that the first call to find the
DescribePlugin procedure will pass, and the second call to
find InitPlugin will silently fail.

Now that the new interface has been defined, it’s possible to
write the code for the new InitPlugin procedure. As before, the
bulk of the code for the new plug-in resides in a separate unit.
Figure 8 shows the modified main.pas containing the InitPlugin
procedure. The first change from the original plug-in is obvious-
ly the addition of the InitPlugin procedure. As before, the proto-
15 December 1998 Delphi Informant

procedure TfrmMain.LoadPlugin(sr: TSearchRec);
var

Description: string;
LibHandle: Integer;
DescribeProc: TPluginDescribe;
InitProc: TPluginInit;

begin
LibHandle := LoadLibrary(Pchar(sr.Name));
if LibHandle <> 0 then
begin

// Find DescribePlugin.
DescribeProc := GetProcAddress(LibHandle,

cPLUGIN_DESCRIBE);
if Assigned(DescribeProc) then
begin

// Call DescribePlugin.
DescribeProc(Description);
memPlugins.Lines.Add(Description);
// Find InitPlugin.
InitProc := GetProcAddress(LibHandle, cPLUGIN_INIT);
if Assigned(InitProc) then
begin

// Call InitPlugin.
InitProc(mnuMain);

end;
end
else
begin

MessageDlg('File "' + sr.Name +
'" is not a valid plugin.',
mtInformation, [mbOK], 0);

end;
end
else
begin

MessageDlg('An error occurred loading the plugin "' +
sr.Name + '".', mtInformation, [mbOK], 0);

end;
end;

Figure 7: The revised LoadPlugin procedure.
type is added to the top of the unit with the export keyword,
and the procedure name is added to the exports clause of the
project source. This procedure creates a new menu item using
the NewItem function, which returns a TMenuItem object.
The new menu item is added to the application menu by the
statement:

ParentMenu.Items[1].Add(I);

Items[1] on the test shell main menu is the item Plug-in, so
this statement adds a new menu item to the Plugin menu
named Plug-in Test.

To handle the response to this new menu item, NewItem can
take, as its fifth parameter, a procedure of type TNotifyEvent,
which is called when the menu item is clicked. Unfortunately,
procedures of this type are, by definition, methods of an
object, and we have no objects in our plug-in. If we try to use
unit main;

interface

uses Dialogs, Menus;

type
THolder = class
public

procedure ClickHandler(Sender: TObject);
end;

procedure DescribePlugin(var Desc: string);
export; stdcall;

procedure InitPlugin(ParentMenu: TMainMenu);
export; stdcall;

var
Holder: THolder;

implementation

procedure DescribePlugin(var Desc: string);
begin

Desc := 'Test plugin 2 - Menu test';
end;

procedure InitPlugin(ParentMenu: TMainMenu);
var

i: TMenuItem;
begin

// Create new menu item.
i := NewItem('Plugin &Test', scNone, False, True,

Holder.ClickHandler, 0, 'mnuTest');
ParentMenu.Items[1].Add(i);

end;

procedure THolder.ClickHandler;
begin

ShowMessage('Clicked!');
end;

initialization
Holder := THolder.Create;

finalization
Holder.Free;

end.

Figure 8: The code for the second plug-in.

{ Trap for WM_GETMINMAXINFO. Calls plugin routine
on every message. }

procedure TfrmMain.MinMaxInfo(var msg: TMessage);
var

m: PMinMaxInfo; // Defined in Windows.pas.
i: Integer;

begin
m := pointer(msg.Lparam);
for i := 0 to lstMinMax.count -1 do begin

TResizeProc(lstMinMax[i])(m.ptMinTrackSize.x,
m.ptMinTrackSize.y);

end;
end;

Figure 9: Message handler for WM_GETMINMAXINFO.

Informant Spotlight
a normal pointer to a function, the Delphi compiler will
complain, so the only solution is to create an object to hold
the menu click handler. This is the purpose of the THolder
class. It has only one method: a procedure named
ClickHandler. A global variable, named Holder, is defined as
type THolder in the var section of this revised main.pas, and
it’s created in the initialization phase of the unit. Now that we
have an object, we can use its method (Holder.ClickHandler) as
a parameter to the NewItem function.

After all that, the ClickHandler procedure does nothing more
than display a dialog box with the message “Clicked!” Not
very interesting perhaps, but again, it proves a point. The
plug-in DLL has successfully modified the main menu of the
parent application, proving its new functionality. And, like
the first example, the application will execute whether this
plug-in is present or not.

Because we created an object to hold our menu click han-
dler, it must be freed when the plug-in is no longer needed.
The finalization section of the revised unit will take care of
this. The finalization section is the opposite of the initial-
ization section, and it’s guaranteed to run when the appli-
cation terminates if a previous initialization section was
encountered.

Placing the statement:

Holder.Free

in the finalization section ensures that the Holder object will
be properly disposed of.

It’s easy to see that the although this plug-in simply modifies
the main menu of the shell application, it could easily manipu-
late any other object that was passed into the InitPlugin proce-
dure. The plug-in could open its own dialog boxes, add items to
list boxes and tree views, or draw to a canvas if needed.

Event-driven Plug-ins
The techniques outlined so far can produce a reasonably
versatile method of extending an application. By adding
new menus, forms, and dialog boxes, it’s possible to write
entirely new functions without having to change the parent
application in any way. There is a limitation however: It’s a
one-sided mechanism. The system, as described, relies on
the user to initiate the plug-in code by means of a menu
click or similar action. Once that code is running, it relies
on another user action to stop it, i.e. to close any forms
that the plug-in might have opened. One possible way of
overcoming this limitation is to make the plug-ins respond
to actions in the parent application — in effect, to simulate
the event-driven programming model that works so well
within Delphi.

With the final sample plug-in, we are going to create a
mechanism whereby the plug-ins can respond to events
generated within the parent application. In general terms,
16 December 1998 Delphi Informant
this is accomplished by deciding what events to trigger
and creating a TList object in the parent application for
each event. Each TList is then passed into the initialization
procedure of the plug-ins. If a plug-in is interested in act-
ing on an event, it adds the address of a responsible func-
tion to the relevant TList. The parent application iterates
the lists of function pointers at the appropriate moment,
calling each function in turn. In this way, it’s possible for
multiple plug-ins to act on the same event.

The events generated by the application will depend com-
pletely on the intended functionality of the program. For
example, a TCP/IP network application might want to notify
plug-ins of data arriving via the TClientSocket object OnRead
event, while a graphics application might be more interested
in palette changes.

To illustrate the concept of event-driven plug-in responses,
we’ll build a plug-in that limits the minimum size of the main
window. This is a somewhat contrived example, as obviously
it’s far simpler to build this routine into the application.
However, it has the advantage of being simple to code and easy
to understand, which is the requirement for this article.

Obviously, the first thing to decide is which events to gener-
ate. In this case, the answer is simple: To limit the size of an
application window, it’s necessary to trap and modify the
Windows message WM_GETMINMAXINFO. Therefore, to
create a plug-in that does this, we must trap the message and
call the plug-in routine inside the message handler. This will
be the event we create.

We then need to create a TList to handle this event. This
is handled in the initialization section of the main form,
where the object, lstMinMax, is created. Next, a message
handler is created to trap the Windows message
WM_GETMINMAXINFO. The code in Figure 9 shows
this message handler.

The LoadPlugin procedure of the shell application must be
modified again to call the initialization routine. This new
initialization function takes our TList as a parameter and
appends to it the address of a function that modifies the
message parameters. Figure 10 shows the final version of
the LoadPlugin procedure, which performs the initializa-

Informant Spotlight

unit main;

interface

uses Dialogs, Menus, classes;

procedure DescribePlugin(var Desc: string);
export; stdcall;

procedure InitPluginEvents(lstResize: TList);
export; stdcall;

procedure AlterMinTrackSize(var x, y: Integer); stdcall;

implementation

procedure DescribePlugin(var Desc: string);
begin

Desc := 'Test plugin 3 - MinMax';
end;

procedure InitPluginEvents(lstResize: TList);
begin

lstResize.Add(@AlterMinTrackSize);
end;

procedure AlterMinTrackSize(var x, y: Integer);
begin

x := 270;
y := 220;

end;

end.

Figure 11: The code for the final plug-in.
tions for all the plug-ins constructed so far.

The final step in this process is to create the plug-in itself.
As in the previous examples, the plug-in incorporates a
description procedure to identify itself. It also carries an
initialization routine, which, in this case, simply accepts a
TList as a parameter. Finally, it includes a non-exported
routine named AlterMinTrackSize, which modifies the val-
ues passed into it. Figure 11 shows the complete code for
the final plug-in.

The InitPluginEvents procedure is the initialization routine
for this plug-in. It takes a TList as a parameter. This TList is
the list created in the parent application to hold the address-
es of relevant functions. The statement:

lstResize.Add(@AlterMinTrackSize);
17 December 1998 Delphi Informant
adds the address of the AlterMinTrackSize function to this
list. Note the declaration of this function: It’s declared as
type stdcall to match the other procedures, but there is no
export directive. As the function is being accessed directly
via its address, there is no need to export it from the DLL
in the usual way.

So, the sequence of events is as follows:
1) As the application initializes, a TList is created.
2) This list is passed to the plug-in initialization procedure,

InitPluginEvents, on startup.
3) The plug-in procedure adds the address of a procedure to

the list.
4) The Windows message WM_GETMINMAXINFO,

which is generated each time a window is resized, is
trapped by our application.

5) This message is handled by our message handler
TfrmMain.MinMaxInfo, displayed in Figure 10.

6) The message handler iterates the list and calls the func-
tions it references, passing the current X and Y minimum
window sizes as parameters. Note that the TList class just
stores pointers; so to do anything useful with the values
held, we must cast the pointer into the required type —
in this case, TResizeProc:

TResizeProc = procedure (var x, y: Integer); stdcall;

7) The plug-in procedure, AlterMinTrackSize (which is
pointed to by the list), takes the X and Y values as var
parameters and modifies them.

8) Control returns to the message handler in the parent
application, which continues with the new values for the
minimum window size.
{ Load the specified plugin DLL. }
procedure TfrmMain.LoadPlugin(sr: TSearchRec);
var

Description: string;
LibHandle: Integer;
DescribeProc: TPluginDescribe;
InitProc: TPluginInit;
InitEvents: TInitPluginEvents;

begin
LibHandle := LoadLibrary(Pchar(sr.Name));
if LibHandle <> 0 then
begin

// Find DescribePlugin.
DescribeProc := GetProcAddress(LibHandle,

cPLUGIN_DESCRIBE);
if Assigned(DescribeProc) then
begin

// Call DescribePlugin.
DescribeProc(Description);
memPlugins.Lines.Add(Description);
// Find InitPlugin.
InitProc := GetProcAddress(LibHandle, cPLUGIN_INIT);
if Assigned(InitProc) then
begin

// Call InitPlugin.
InitProc(mnuMain);

end;
// Find InitPluginEvents for the 3rd plugin.
InitEvents := GetProcAddress(LibHandle,

cPLUGIN_INITEVENTS);
if Assigned(InitEvents) then
begin

// Call InitPlugin.
InitEvents(lstMinMax);

end;
end
else
begin

MessageDlg('File "' + sr.Name +
'" is not a valid plugin.',
mtInformation, [mbOK], 0);

end;
end
else
begin

MessageDlg('An error occurred loading the plugin "' +
sr.Name + '".', mtInformation, [mbOK], 0);

end;
end;

Figure 10: The final version of LoadPlugin.

Informant Spotlight
9) The TList is freed in the finalization section of the main
code when the application quits.

Conclusion
When using this architecture, it’s probably a good idea to
make use of the packages feature that Delphi provides.
Under normal circumstances, I’m not a big fan of separate
run-time modules, but when you consider that any Delphi
DLL containing more than a trivial amount of code will be
over 200KB, it starts to make sense.

Hopefully, this article has been of some use, if only to get
you thinking about application design and how it could be
made more flexible. I know that I could have saved myself
some work on modifications if I had used some of these
techniques in previous applications.

However, I do not present plug-ins as a universal solution.
There are clearly some situations where the added com-
plexity is unjustified or the application simply doesn’t
lend itself to being broken into extensible units. There are
other ways of achieving the same effect. Delphi itself pro-
vides an interface for writing modules that integrate into
the IDE, which is much more object-oriented (some
would say “cleaner”), than the one I have outlined, and I
am sure it’s possible to imitate this for your own use. It’s
also possible to load Delphi packages at run time. Explore
the possibilities. ∆

[The techniques discussed in this article apply to Delphi 4 as
well. In fact, Delphi 4 adds a projects feature that makes the
development of this kind of application-plus-DLL arrange-
ment easier to develop.]

The projects referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\DEC\DI9812ME.

Marc Evans has been developing Bespoke Software using Delphi versions 1,
2, and 3 for the past three years. Marc currently works as an
Analyst/Programmer, developing systems using client/server databases and
data-capture devices.
18 December 1998 Delphi Informant

19 December 1998 Delphi Informant

Algorithms
Delphi 1, 2, 3, 4 / Label Setting, Label Correcting Algorithms

By Rod Stephens
As the Crow Flies
Determining the Shortest Path through a Network

A t the end of a long, hard day of hunt-and-peck at the keyboard, you prob-
ably don’t want to waste a minute getting home. If you’ve worked at the

same place for more than a few months, you probably know the absolute
quickest path from your office to your home. You know exactly which streets to
follow and what turns to take to get home in the minimum possible time.
This article explains how you can find shortest
paths more generally through any network.
You can use the algorithms described here to
find the shortest route from your office to the
airport, the best way to route e-mail through a
computer network, or the shortest way to run
telephone wires through existing conduits.

The Big Picture
The shortest-path problem is intuitively easy
to understand. Given a network (such as the
street network shown in Figure 1), a start
position, and an end position, the goal is to
find a path through the network that mini-
mizes the total cost of the path.

A network consists of a collection of nodes
connected by links. In a street network,
nodes correspond to intersections and links
Figure 1: A simple network.
correspond to the street segments that con-
nect intersections. Each link has a cost that
represents whatever quantity the program
needs to minimize along the path. For a
street network, the cost might be the link’s
length, or the average amount of time it takes
to drive over that link. For a telephone net-
work, the cost might be the amount of signal
loss caused by the wires in the link.

You can represent a network in Delphi using a
TNode class to represent nodes, and a TLink
class to represent links. The TNode class defines
a node’s X and Y coordinates. It includes a
TList object to hold a list of the links leaving
the node.

The TLink class includes references to the two
nodes the link connects and the link’s cost:

TNode = class(TObject)

public

x, y : Integer; // The node's location.

links : TList; // Links to neighbors.

end;

TLink = class(TObject)

public

node1, node2 : TNode; // The endpoints.

cost : Integer; // The link's cost.

end;

For example, you could use the code shown
in Figure 2 to create two nodes connected by
a link with cost equal to the distance between
the nodes.

Algorithms

var
start_node, end_node : TNode;
the_link : TLink;
dx, dy : Integer;

begin
// Create the start node.
start_node := TNode.Create;
start_node.x := 100;
start_node.y := 150;

// Create the end node.
end_node := TNode.Create;
end_node.x := 200;
end_node.y := 300;

// Create the link.
the_link := TLink.Create;
the_link.node1 := start_node;
the_link.node2 := end_node;

// Set the link's cost.
dx := start_node.x - end_node.x;
dy := start_node.y - end_node.y;
the_link.cost := Round(Sqrt(dx * dx + dy * dy));

// Add the link to the nodes' lists of links.
start_node.links.Add(the_link);
end_node.links.Add(the_link);

Figure 2: Creating two nodes connected by a link.

Figure 3: A shortest-path tree.

type
TListStatus = (statNotInList, statNowInList,

statWasInList);
TLink = class; // Forward declaration.
TNode = class(TObject)

public
x, y : Integer; // The node's location.
links : TList; // Links to neighbors.

from_link : TLink; // Path tree link.
best_cost : Integer; // Best cost so far.
status : TListStatus;

constructor Create;
destructor Destroy; override;

end;

TLink = class(TObject)
public

node1, node2 : TNode; // The endpoints.
cost : Integer; // The link's cost.
in_tree : Boolean; // In the path tree?

end;

Figure 4: Enhanced TNode and TLink classes used by the exam-
ple program PathS.
By calculating shortest paths from a particular node to every
other node in the network, you can create a shortest-path tree,
such as the one shown in Figure 3. The bold links show the
shortest paths from any node in the network back to the tree’s
root node.

The two algorithms (described later) both build shortest-path
trees rooted at a start node. These algorithms are quite fast.
In fact, it’s usually faster to build an entire shortest-path tree
than it is to try to find a single shortest path between two
specific nodes.

Most shortest-path algorithms fall into two categories:
label setting and label correcting. Both build a shortest-path
tree one branch at a time. The difference between the two
lies in how the algorithms select the next link to add to
the tree. Label-setting algorithms always add a link that
belongs in the final shortest-path tree. Label-correcting
20 December 1998 Delphi Informant
algorithms sometimes make mistakes; they may occasion-
ally add a link that doesn’t belong in the shortest-path
tree. In that case, the algorithm will later correct itself by
removing the incorrect link and replacing it with a differ-
ent one.

Label Setting
The label-setting algorithm described here builds a candidate
list to keep track of nodes that may be ready to join the
shortest-path tree. The algorithm repeatedly removes a node
from this list and adds it to the growing tree. When it adds a
node to the shortest-path tree, the algorithm keeps track of
the link that leads to that node in the tree. It also keeps track
of the distance from the tree’s root to each node, and whether
the node is currently in the candidate list.

To track these items, the program uses the enhanced
TNode and TLink classes shown in Figure 4. In the TNode
class, from_link is the link that connects the node to the
tree, best_cost is the current shortest distance from the root
node to the node, and status tells whether the node is cur-
rently in the shortest-path tree.

In the TLink class, the in_path variable indicates whether the
link is in the shortest path between two selected nodes. This
value isn’t needed for the shortest-path calculation, but it
makes displaying the shortest path easier.

The label-setting algorithm begins by initializing the best_cost
value for each node in the network to a very large value
(32,767), and by setting each node’s status to statNotInList. It
then places the selected root node in the candidate list, and
sets the root node’s best_cost value to 0.

Next, while the candidate list is non-empty, the program
searches it to find the next node to add to the shortest-path

AlgorithmsAlgorithms

Figure 5: A small network. Figure 6: A partial shortest-path tree.
tree. It selects the node that has the smallest best_cost value.
Once it has found the node with the smallest cost, the algo-
rithm removes it from the candidate list and sets its status
to statWasInList. At this point, the node is permanently in
the shortest-path tree, and its best_cost and from_link fields
have their final values. The algorithm does not consider this
node again.

The program then examines the links leaving the node that
was just added to the tree and the neighbor nodes at the
other end of those links. For each neighbor that has not
already been removed from the candidate list, the algorithm
calculates the cost from the root to the node plus the cost of
the link to the neighbor. This gives the total length to the
neighbor via the shortest path through the node.

If the new total is less than the neighbor’s current best_cost
value, the algorithm updates best_cost. It stores a reference
to the link in the neighbor’s from_link to indicate that the
neighbor may be connected to the tree using this link.
Finally, if the neighbor is not already in the candidate list,
the algorithm adds it.

Setting an Example
For a concrete example, consider the small network in
Figure 5. Letters indicate nodes, and numbers indicate link
costs. Initially, the candidate list contains only the root
node and has a best_cost value of 0. Because it is the only
item in the candidate list, the root node has the smallest
best_cost value. The algorithm removes the root from the list
and considers its neighbor nodes A and C. The best_cost
value to the root node is 0. That value, plus the cost of the
link from the root to node A, is 0 + 4 = 4. This is less than
node A’s current best_cost value of 32,767, so the program
changes A’s best_cost value to 4 and its from_link value to
indicate the link between the root and node A. It then adds
node A to the candidate list.

The algorithm then considers the other neighbor of the root:
node C. Using steps similar to the ones it used to examine
node A, the program sets node C’s best_cost to 5 and adds it
21 December 1998 Delphi Informant
to the candidate list. The program is done examining the root
node’s neighbors.

Next, the program searches the candidate list for the node
with the smallest best_node value. Currently, nodes A and C
are in the list, and node A has the smaller best_cost value of 4.
The algorithm removes node A from the list and examines its
neighbors. At this point, node A has its final best_cost and
from_link values, and will not be considered again.

When it examines node A’s neighbors, the algorithm adds
nodes B and D to the candidate list, both with best_cost val-
ues of 11. Figure 6 shows the network at this point. The bold
link from the root to node A represents a link that will be in
the final shortest-path tree. The dashed links connecting
nodes C, B, and D represent the current from_link values for
the nodes in the candidate list.

The algorithm searches the candidate list again and finds that
node C has the smallest best_cost value at 5. It removes node
C from the candidate list and considers its neighbors B and
G. The distance to node B via node C is node C’s best_value
plus the cost of the link from node C to node B; that is, 5 +
5 = 10. This is lower than node B’s current best_cost value of
11, so the algorithm updates B’s best_cost and from_link val-
ues. Because node B is already in the candidate list, the algo-
rithm does not need to add it again.

The algorithm considers node C’s other neighbor, node G,
and adds it to the candidate list. This gives the result shown
in Figure 7. The algorithm continues removing the node
from the candidate list with the smallest best_cost value until
the list is empty. The result is the shortest-path tree shown in
Figure 8.

Delphi Details
Listing One (on page 24) shows Delphi code that finds the
shortest-path tree rooted at the node StartNode. To make
working with all the nodes easier, the program keeps refer-
ences to all nodes in the Nodes TList object. It keeps refer-
ences to all the links in the Links TList object.

Figure 7: Adding to the shortest-path tree. Figure 8: A final shortest-path tree.

// Find the shortest path from StartNode to EndNode.
procedure TPathForm.FindPath;
var

link_num : Integer;
node : TNode;
link : TLink;

begin
// Clear the previous data.
for link_num := 0 to Links.Count - 1 do begin

link := Links.Items[link_num];
link.in_path := False;

end;

// Do no mode if StartNode = nil or EndNode = nil.
if ((StartNode = nil) or (EndNode = nil)) then Exit;

// Trace the path from EndNode back to StartNode
// marking the links' in_path fields.
TotalCost := 0;
node := EndNode;
while node <> StartNode do begin

link := node.from_link;
link.in_path := True;
if link.node1 = node then

node := link.node2
else

node := link.node1;
TotalCost := TotalCost + link.cost;

end;
end;

Figure 9: Tracing a path backward from EndNode to StartNode.

Algorithms
Having seen the example, you should have little trouble fol-
lowing the Delphi code. The procedure initializes each node’s
best_cost value to INFINITY (32,767). It places StartNode in
the candidate list. Then, as long as the candidate list is non-
empty, it removes the node with the smallest best_cost value
and processes it.

When the FindPathTree procedure finishes, each node’s
from_link value indicates the link that connects it to the
shortest- path tree. A program can use these fields to trace a
path backward from an end node to the start node. The code
shown in Figure 9 does just that. It first sets each link’s
in_path value to False. It then traces the path backward from
EndNode to StartNode, setting in_path to True for each link
along the way. The PathS program uses the in_path values to
determine which links to draw in bold.

The PathS project (shown in Figure 10) uses this code to dis-
play shortest paths in a network. Click on a node with the left
mouse button to select a start node. At that point, the program
finds the shortest-path tree rooted at the node. Then, click the
right mouse button on an end node. The program uses the
shortest-path tree to find and display the shortest path between
the nodes. (PathS, and all other projects described in this arti-
cle, are available for download; see end of article for details.)

Label Correcting
The label-setting algorithm spends a lot of time searching
through its candidate list for the node with the smallest
best_cost value. That node’s best_cost and from_links have
reached their final values, so the algorithm adds the node to
the final shortest-path tree.

Label-correcting algorithms take a different approach.
Rather than searching the candidate list for the node with
the smallest best_cost, the label-correcting algorithm just
takes any node from the list. The algorithm adds the node
to the shortest-path tree and considers its neighbors, just as
a label-setting algorithm does.
22 December 1998 Delphi Informant
Later, as it continues to add nodes to the shortest path tree, the
algorithm may discover it can reduce the best_cost value of a
node that’s already in the tree. In that case, it updates the node’s
best_cost and from_link values and places it back in the candidate
list. That allows the program to correct any other incorrect paths
it may have made using the node’s previous best_cost value.

Listing Two, on page 24, shows Delphi source code that
finds a shortest-path tree using a label-correcting algorithm.
The PathC program, shown in Figure 11, calculates short-
est paths using a label-correcting algorithm. Aside from its
choice of algorithm, the example program PathC is very
similar to the example program PathS.

Figure 10: The example program PathS displaying a shortest path.

Algorithms

Figure 11: The example program PathC.
Label-correcting and label-setting algorithms are comparable
in speed. One big difference between the two is that label-
correcting algorithms cannot handle networks with negative
cost cycles. If several links have negative costs and the pro-
gram can find a circular path through those links, a label-
correcting algorithm will follow the loop again and again,
reducing the total cost of the path it is following.

On the other hand, a label-setting algorithm never reconsid-
ers a node once it has been removed from the candidate list.
It won’t necessarily produce meaningful results for negative-
length cycles, but it won’t get stuck in an infinite loop either.
Of course, for most physical networks, such as street net-
works, negative link costs don’t mean much anyway, so you
may never need to use this kind of network.
23 December 1998 Delphi Informant
Conclusion
Label-correcting algorithms save time by not searching for
the next node to remove from the shortest-path tree. They
lose time when they are forced to put a node back in the
candidate list and process it again.

Some hybrid algorithms try to reduce the amount of time
needed to select a node from the candidate list while
improving the chances of making a good choice. One vari-
ation adds nodes that have previously been on the candi-
date list to the beginning of the list, and it adds others at
the end. The idea is to revisit previously examined nodes
quickly, before long false paths are built using incorrect
best_cost values. This modification produces a modest
improvement without greatly complicating the algorithm.

Using one of these algorithms, you can build sophisticated
network applications in Delphi. You can build programs
that find paths through street networks, route packages
through transshipment networks, or plan cable installa-
tions. You may even find an improvement on that all-
important shortest path from your office to your home. ∆

The projects referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\DEC\DI9812RS.

Rod’s just-released book, Ready-to-Run Delphi 3.0 Algorithms [John Wiley &
Sons, 1998], explains dozens of algorithms like the ones described in this col-
umn. Rod has also written several other books, including Custom Controls
Library [John Wiley & Sons, 1998] and Visual Basic Graphics Programming
[John Wiley & Sons, 1997]. Learn more about his books at
http://www.vb-helper.com, or contact him at RodStephens@vb-helper.com.

http://www.vb-helper.com

Algorithms
Begin Listing One — Label Setting
// Find the shortest path tree.
procedure TPathForm.FindPathTree;
var

node_num, link_num : Integer;
best_node, best_cost : Integer;
new_cost : Integer;
node, to_node : TNode;
link : TLink;
candidates : TList;

begin
// Do nothing if StartNode = nil.
if StartNode = nil then Exit;

// Clear previous path tree data.
for node_num := 0 to Nodes.Count - 1 do begin

node := Nodes.Items[node_num];
node.from_link := nil;
node.best_cost := INFINITY;
node.status := statNotInList;

end;

// Create the candidate list and add the root to it.
candidates := TList.Create;
candidates.Add(StartNode);
StartNode.best_cost := 0;
StartNode.status := statNowInList;

// While the candidate list is not empty, process it.
while candidates.Count > 0 do begin

// Find the node with the smallest cost.
node := candidates.Items[0];
best_cost := node.best_cost;
best_node := 0;
for node_num := 1 to candidates.Count - 1 do begin

node := candidates.Items[node_num];
if node.best_cost < best_cost then begin

best_cost := node.best_cost;
best_node := node_num;

end;
end;

// Remove this node from the candidate list.
node := candidates.Items[best_node];
candidates.Remove(node);
node.status := statWasInList;

// Add the node's neighbors to the candidate list.
for link_num := 0 to node.links.Count - 1 do begin

// Get the neighbor node.
link := node.links.Items[link_num];
if link.node1 = node then

to_node := link.node2
else

to_node := link.node1;

// See if node had been on the candidate list before.
if to_node.status <> statWasInList then begin

// See if we can improve its best_cost.
new_cost := node.best_cost + link.cost;
if new_cost < to_node.best_cost then begin

// This is an improvement. Update the
// neighbor and add it to the list.
to_node.best_cost := new_cost;
to_node.from_link := link;
if to_node.status = statNotInList then begin

to_node.status := statNowInList;
candidates.Add(to_node);

end;
end;

end;
end; // End examining the node's neighbors.

end; // Repeat until candidate list is empty.

// Free the candidate list.
candidates.Free;

end;

End Listing One
24 December 1998 Delphi Informant
Begin Listing Two — Label Correcting

// Find the shortest path tree.
procedure TPathForm.FindPathTree;
var

node_num, link_num : Integer;
new_cost : Integer;
node, to_node : TNode;
link : TLink;
candidates : TList;

begin
// Do nothing if StartNode = nil.
if StartNode = nil then Exit;

// Clear previous path tree data.
for node_num := 0 to Nodes.Count - 1 do begin

node := Nodes.Items[node_num];
node.from_link := nil;
node.best_cost := INFINITY;
node.status := statNotInList;

end;

// Create the candidate list and add the root to it.
candidates := TList.Create;
candidates.Add(StartNode);
StartNode.best_cost := 0;
StartNode.status := statNowInList;

// While the candidate list is not empty, process it.
while candidates.Count > 0 do begin

// Remove the first item from the candidate list.
node := candidates.Items[0];
candidates.Remove(node);
node.status := statWasInList;

// Add the node's neighbors to the candidate list.
for link_num := 0 to node.links.Count - 1 do begin

// Get the neighbor node.
link := node.links.Items[link_num];
if link.node1 = node then

to_node := link.node2
else

to_node := link.node1;

// See if we can improve the path
// to the neighbor.
new_cost := node.best_cost + link.cost;
if new_cost < to_node.best_cost then begin

// This is an improvement. Update the
// neighbor and add it to the list.
to_node.best_cost := new_cost;
to_node.from_link := link;
// Add the node to the candidate list.
if to_node.status <> statNowInList then begin

candidates.Add(to_node);
to_node.status := statNowInList;

end;
end;

end; // End examining the node's neighbors.
end; // Repeat until candidate list is empty.

// Free the candidate list.
candidates.Free;

end;

End Listing Two

25 December 1998 Delphi Informant

DBNavigator
Data Modules / Delphi 2, 3, 4

By Cary Jensen, Ph.D.
Delphi Database Development
Part IV: Data Modules

Over the past few months, this series has taken an in-depth look at the
foundations of Delphi database development. Topics have included an

overview of the Borland Database Engine (BDE), as well as how to use and
configure the basic BDEDataSet components: Table, Query, and StoredProc.
This month’s “DBNavigator” examines the uses and misuse of data modules.
The Data Module Defined
A data module is a form-like container that
first appeared in Delphi 2. Unlike a form, a
data module is never visible to the user.
Instead, its sole purpose is to hold one or
more components that can be shared by
other parts of your program. One of the
common uses of a data module is to hold
DataSets (including the TClientDataSet,
which is available in the Delphi 3 and 4
Client/Server Suites), permitting two or
more forms within the application to share
the properties and methods defined for
those DataSets.

The alternative to using a data module is to
place a different set of data-set components
on each form in your application. While
there is certainly nothing fundamentally
wrong with this approach, it means that
every form contains data-set components
that must be individually configured. If two
or more forms need to display the same data
or event handlers (for providing client-side
data validation, for example), placing those
DataSets on a single data module shared by
the two or more forms provides easier devel-
opment and maintenance.

But DataSets aren’t the only components
that can be used with data modules. In fact,
a data module can hold any component that
doesn’t descend from TControl. This
includes MainMenu, PopupMenu,
OLEContainer, IBEventAlerter, Timer, and
any component on the Data Access and
Dialogs pages of the Component palette,
just to name a few.

Just because a data module can hold a cer-
tain component, however, doesn’t mean it’s
necessarily a good idea to always place that
type of component on a data module. For
example, imagine that you place a
MainMenu on a data module. Any event
handlers for that menu would naturally be
placed on that data module as well. As a
result, any reference to the object variable
Self from within those event handlers would
refer to the data module, and not the form
from which a particular menu item was
selected. Such an arrangement would
require complex code that would probably
be difficult to maintain, thereby canceling
any advantage afforded by the data module.

Using a Data Module
Delphi makes it easy to use a data module
and to share it between multiple forms. The
following steps demonstrate how to use a
single data module to share a Table between
two forms:
1) Create a new project.
2) Add the following components to the

main form: From the Data Controls
page of the Component palette, add one

Figure 1: A data module containing a single Table component
that can be shared by multiple forms.

DBNavigator
DBNavigator and one DBGrid, and from the Data
Access page, add one DataSource. Set the Align property
of the DBNavigator to alTop, and the Align property of
the DBGrid to alClient. Next, set the DataSource prop-
erties of the DBNavigator and DBGrid to DataSource1.

3) Next, add a data module. Select File | New, then dou-
ble-click the Data Module Wizard in the Object
Repository. (In Delphi 2 and 3, you can also select File |

New Data Module.)
4) Add a single Table to the data module. Set the Table’s

DatabaseName property to DBDEMOS, and its TableName
property to CUSTOMER.DB.

5) Double-click the data module to add an OnCreate event
handler. Add the following code to this event handler:

procedure TDataModule2.DataModule2Create(
Sender: TObject);

begin
Table1.Open;

end;

The data module should now look like that shown in
Figure 1.

6) The only step remaining is to associate the DataSet on
the data module with the data source on the main form.
Figure 2: This form displays data defined by a Table component
contained in a data module.

26 December 1998 Delphi Informant
Doing this requires that the unit defining the main
form use the unit that defines the data module. The eas-
iest way to achieve this is to select Form1, then select
File | Use Unit to display the Use Unit dialog box. Select
Unit2. In response, Delphi adds a uses clause specifying
Unit2 to the implementation section of Unit1. Once
you’re using Unit2 from Unit1, select DataSource1, and
set its DataSet property to DataModule2.Table1. The
project is complete. Press 9 to run this project. An
example of the main form is shown in Figure 2.

As you learned earlier, any component from the Data
Access page of the Component palette can be placed onto a
data module. You might then ask, didn’t we place the
DataSource component on the data module, as well? The
answer is we could have; the project would have worked.
However, unless you have a particularly good reason to do
otherwise, it’s generally best to place DataSource compo-
nents onto individual forms. Doing so permits you to con-
vert a form from using one data module to another by sim-
ply changing the DataSet property of the DataSource. If the
DataSource component appears on the data module,
switching a form from using one data module to another
requires that the DataSource property for every data-aware
control on the form be changed. Depending on the number
of data-aware controls, this can be a major task.

Sharing Data Using a Data Module
While the preceding example demonstrates how to create
and use a data module, the DataSet on that data module
was used by a single form. While there’s nothing inherently
wrong with doing this, the real power of the data module is
realized when two or more forms share one or more
DataSets appearing on the data module. The following steps
expand on the preceding example, demonstrating how mul-
tiple forms can share a DataSet on a data module:
1) With the project we just created open in Delphi, add

another form to it by selecting File | New Form. By
default, the newly added form is named Form3.

2) We now want to add one or more data-aware controls to
Form3. Begin by adding a DBNavigator to Form3. Set
the Align property of this DBNavigator to alTop.

3) You could continue adding data-aware components in
this fashion, but because the next data-aware controls
you want to add are DBEdit controls, there’s an easier
way to do this. Select DataModule2 and right-click
Table1 to display the Fields Editor. In Delphi 4, press
CF to add all fields from Table1 to the Fields Editor.
Using Delphi 3, right-click the Fields Editor (or press
the Add button with Delphi 2), then select OK to choose
all fields from the Add Fields dialog box.

4) In the next steps, you’re going to drag and drop several
fields from the Fields Editor onto Form3. Make sure
that both Form3 and the Fields Editor are visible. Then,
select the CustNo, Company, City, State, and Zip fields in
the Fields Editor. Do this by holding down C while
clicking each of these fields (see Figure 3).

5) Now, drag the selected fields from the Fields Editor, and
drop them onto Form3. It doesn’t matter from which of

DBNavigatorDBNavigator

Figure 4: The controls placed on this form were dragged and
dropped from the Fields Editor for DataModule2.Table1.
your selected fields you
begin the drag opera-
tion — all selected
fields will be dragged.

6) Because Form3 does
not yet use Unit2 (the
unit that defines the
data module), you’re
first presented with a
dialog box asking you
to confirm that you
want to use Unit2
from Form3. Select
Yes. Once you do,
Delphi creates one
data-aware control
and one label for each
of the fields you
dropped. It also adds a
DataSource.
Furthermore, the
properties of each of
the data-aware con-
trols are set to use the
newly-created data
source, and their
DataField properties are set to the appropriate field in
Table1. In addition, the DataSet property of the newly-
created data source is set to DataModule2.Table1. All
you need to do is set the DataSource property of the
DBNavigator to DataSource1, then resize Form3 so it
better accommodates the newly-placed fields. An
example of how Form3 might now look is shown in
Figure 4.

7) To complete this project, add a menu to Form1, and cre-
ate an event handler that will display Form3. To do this,
return to Form1 and place a MainMenu component on it.

8) Double-click the main menu to display the Menu
Designer. With the first menu item selected in the
Menu Designer, enter the value Show Single Record
as the Caption property. With this menu item still select-
ed, select the Events tab of the Object Inspector and
double-click the OnClick event to create its event han-
dler. Enter the following code into this event handler:

procedure TForm1.ViewSingleRecord1Click(
Sender: TObject);

begin
with TForm3.Create(Self) do Show;

end;

9) Because the code in the preceding step references
TForm3, which is defined in Unit3, you must add Unit3
to Form1’s uses clauses. With Form1 selected, choose File

| Use Unit, and select Unit3, as you did earlier in this
example.

10)The preceding code also assumes that Form3 won’t be
auto-created. Because it’s auto-created by default, select
Project | Options, select Form3 in the Auto-create forms

Figure 3: Fields can be selected
within the Fields Editor, then
dropped onto a form to automati-
cally create data-aware controls
and their associated labels.
27 December 1998 Delphi Informant
list, and click the right-arrow button to move it into the
Available forms list (see Figure 5).

11)Finally, to ensure the release of Form3 when the user
closes it, select Form3; then with Form3 selected in the
Object Inspector, go to the Events page and add the fol-
lowing OnClose event handler:

procedure TForm3.FormClose(Sender: TObject);
begin

Action := caFree;
end;

This code causes the instance of Form3 that’s being
closed to be destroyed. Failure to add this code results in
every instance of Form3 that is created remaining in
memory, albeit invisible to the user after being closed,
until the application terminates.

12)Your project is complete. Save the project and run it.
With Form1 displayed, select View Single Record. Now,
using the DBNavigator on either of the displayed forms,
navigate to another record. Both forms display the same
current record (see Figure 6). This occurs because both
use one single-Table component on the data module.

Should You Always Use a Data Module?
With apologies to Dennis Miller, I don’t want to get on a rant
here, but I can’t believe it’s still necessary to answer the question
about whether you should always put your DataSet components
in a data module. However, at the Inprise 98 conference in
Denver, I actually heard an Inprise employee state in front of a
large audience that you should always put DataSets into data
modules. This is understandable only in that it’s likely that this
person doesn’t build real-world database applications for a liv-
ing. Nonetheless, this wrong-thinking must be addressed.

The answer is: No, you don’t always put DataSets on data mod-
ules. Yes, data modules are great. Yes, they provide you with a

DBNavigator

Figure 5: Use the Project Options dialog box to remove a form
or data module from the Auto-create forms list.

Figure 6: The multi-record view and the single record view are
synchronized to the same record, because both use the same
Table component on the data module.
single repository for configurations and event handlers that can
be shared. However, they aren’t appropriate in every situation.

When Should You Use a Data Module?
Data modules are a perfect solution for those situations where
two or more forms, or other similar containers, need to share a
common set of components. The project example built earlier
in this article is a good example of that. Because Form1 and
Form3 needed to share a common view of Table1, including any
ranges, filters, sort orders, calculated fields, and so on, the data
module provided an easy and effective means for this. This shar-
ing isn’t limited to single Tables either; there’s no reason why
two or more forms can’t share a multitude of DataSets, dialogs,
timers, and the like, placed on one or more data modules.

In fact, there are a number of situations where you must use
a data module. For example, if you’re using the MIDAS tech-
nology found in Delphi 3 and Delphi 4 Client/Server Suites,
you must place your BDEDataSet components, as well as any
provider components that you need, onto a remote data
module. Remote data modules are special data modules that
implement certain interfaces necessary for the cross-applica-
tion communication that’s required by MIDAS.

Another example where you’re required to use a data module
can be found with the Web Broker components. These com-
ponents, also available in Delphi 3 and Delphi 4
Client/Server Suites, as well as available separately from
Inprise, make use of a Web module (a TDataModule descen-
dant). You define the actions to which your Web server
extension can respond using the Web module. (If you use a
WebDispatch component, a Web module isn’t necessary.)

When Should You Avoid Data Modules?
What really bugs me about people saying you should always
use a data module is that there are situations in which you
28 December 1998 Delphi Informant
shouldn’t use a data module. And there are other situations
where a data module can be used, but doing so unnecessari-
ly complicates your applications.

The general rule of thumb is that you don’t use a data mod-
ule when there should be no sharing of a DataSet. The classic
example of this is when you’re creating reports that use
Delphi DataSets for their data. These DataSets should never
be shared. The reason for this is that VCL-based reporting
tools must navigate a DataSet in order to print data. Imagine
what can happen if one of these reports uses a DataSet on a
data module, and that same DataSet is used by data-aware
controls on a form. The user is viewing the form, then prints
the DataSet. The next thing the user sees is their form
scrolling frantically as the report navigates the DataSet. Not
only can this be confusing to the user, it causes a catastrophic
loss of performance for the report, as the data-aware controls
in the user interface must be repainted for each record.

And this presents a best-case scenario for data-module
sharing with reports. Imagine what happens to the report
if the user is currently editing a record, and that record
contains errors that prevent the cursor from leaving it.
Imagine what would happen if a user prints two reports
simultaneously, and the reports share a data module. They
would be fighting for the control of the cursor, but the
user may never know this. Clearly, reports should not
share a DataSet.

While reports provide a clear example where DataSet sharing
is unacceptable, there are two other situations where data
modules are generally a bad idea. The first is when you have
one form that uses a completely unique view of data. That
view may involve either a table that’s never viewed from any
other form, or a table that makes use of a range, filter, or sort
order used nowhere else in the application.

A second instance where data modules should typically be
avoided is when you’re writing multiple-instance forms. A
multiple-instance form is one where more than one copy can
be displayed simultaneously. Of course, part of such a design
is that each instance displays a different record or set of
records, different sort order, or some similar difference.
Obviously, such forms can’t share a single DataSet. The easiest

DBNavigator
way to design a multiple instance form is to add the DataSet
or DataSets directly on the form. This ensures that each
instance of the form has its own DataSet or sets, meaning that
each form has its own cursor(s) and view(s) of the data.

For these last two examples, it could be argued that a data
module could still be used. For unique view forms, a data
module can be used, just not shared. Likewise, with multi-
ple-instance forms, each instance of the form can be
responsible for creating its own instance of a data module.
However, using a data module in these cases unnecessarily
complicates your application. Why use two containers — a
form and a data module — when one will suffice? Because
the primary benefit of the data module is simplicity, it’s
absurd to use a data module when it increases complexity.

A final note about data modules is in order. By default,
they’re auto-created. If you always use data modules, and
they’re always auto-created, it’s likely all your DataSets will
be opened when you start your application. This can result
in long application start-up times, and an unnecessary num-
ber of table-locking resources being used. I once saw an
application that had an auto-created data module contain-
ing about 100 DataSets. As you can imagine, one reason the
client asked me to look at this application in the first place
was that they were unhappy with the load time.

The solution to problems caused by auto-created data
modules is to remove them from the Auto-create forms list
on the Project Options dialog box, just as we did in the
example presented earlier in this article. Once you do this,
however, you must take responsibility for creating your
data modules on-the-fly, before displaying a form that
makes use of the components on the data module. This
can be complicated, however. If one data module can be
29 December 1998 Delphi Informant
used by two or more forms, each form must test for the
pre-existence of the data module upon the form’s creation.
If the data module doesn’t yet exist, it must be created.
Releasing the data module, if this is desired, also requires
more coding. Specifically, because one data module may be
used by more than one form, it’s not enough to simply free
the data module when a form is closing. Instead, you must
implement some form of reference counting for the data
module, so that you release it only when the last form
requiring it is being closed.

Conclusion
Data modules provide you with a container that can hold
components that can be shared by multiple forms. While
data modules can simplify the development and mainte-
nance of your applications, however, they’re not appropriate
for every situation. Inappropriate use of data modules can
lead to unwanted side effects, as well as increase the overall
complexity of your applications. ∆

The projects referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\DEC\DI9812CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is co-author of 17 books, including Oracle
JDeveloper [Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill,
1998], and Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a
Contributing Editor of Delphi Informant, and is an internationally-respected
trainer of Delphi and Java. For information about Jensen Data Systems con-
sulting or training services, visit http://idt.net/~jdsi or e-mail Cary at
cjensen@compuserve.com.

http://idt.net/~jdsi

30 December 1998 Delphi Informant

Columns & Rows
Delphi 3, 4 / ADO / ASP / OLEDB / IIS

By Ron Loewy
Much ADO about the Web
Using ActiveX Data Objects from Delphi Applications

OLEDB is the new Microsoft standard that provides a standard interface to
data stores. OLEDB recognizes that an increasing number of applications

are being written using the three-tier model that differentiates between data
providers, logic processors, and information clients. Unlike ODBC and other
data standards of the past (like the BDE), OLEDB isn’t limited to traditional data
sources (relational desktop or SQL-based databases). OLEDB providers can be
written for e-mail clients, proprietary applications, data stores, graphic applica-
tions, and more.
The OLEDB SDK ships with an ODBC data
provider that allows every ODBC data source
to be used by an OLEDB information client
application. While the OLEDB SDK is a pow-
erful collection of COM interfaces you can use
to create data providers, logic processors, or
information clients, it’s a complex API and
can’t be used directly by scripting languages.

Microsoft recognized this problem and
built a set of Automation objects that sim-
plify the tasks of data retrieval and updat-
ing: the ActiveX Data Objects (ADO). It
combines features from older Microsoft
data access object hierarchies, such as DAO
and RDO, and uses OLEDB to provide
access to any data store that has an OLEDB
data provider. ADO can be employed by
any programming language that can use
Automation objects, including Delphi and
Visual Basic. ADO’s most popular applica-
tion so far is the Web server application
market, where ADO is used in Microsoft’s
Active Server Pages (ASP) applications.

ASP applications are interpreted HTML
pages that embed JScript or VBScript.
These scripts, implemented using
ActiveScript (see Tom Stickle’s “ActiveX
Scripting” article in the February, 1998
Delphi Informant), can inspect the parame-
ters sent from the Web browser, access
databases using ADO, write to the HTML
stream, or activate Automation objects to
perform additional tasks.

Because Delphi can create Automation
objects for use in ASP applications, it
makes sense for your Delphi application
and ASP code to share the same database;
it also makes sense to use ADO in your
Delphi applications (just as you do in your
ASP code).

The ADO Object Hierarchy
ADO provides a set of loosely hierarchical
objects. These objects provide the function-
ality to connect to data sources, query and
update record sets, and report errors. The
objects are exposed as dual-interface COM
objects, so you can either import the
msado15.dll file to create a Pascal type
library, or use Automation. I use
Automation in this article. It’s a little slow-

Columns & Rows

procedure SetCurrentRecordFields(Rs: OleVariant;
FieldNames, FieldValues: array of OleVariant);

var
i : Integer;
Fld : OleVariant;
fName : string;
fVal : OleVariant;

begin
for i := Low(FieldNames) to High(FieldNames) do begin

fName := FieldNames[i];
Fld := Rs.Fields[fName];
fVal := FieldValues[i];
Fld.Value := fVal;

end;
Rs.Update;

end;

Figure 1: Updating the current row in the recordset using the
Fields collection.
er than calling COM objects with a vtable, but the code is
the equivalent of the ADO code I use in the ASP samples.

The Connection Object
The ADO Connection object is used to establish an open con-
nection to a data source and represents a unique session with
the data source. In Delphi terms, think of a Connection object
as a combination of the Database and Session components.

You open a Connection using the Open method, which receives
a “connection string,” i.e. a string that specifies the data source
you connect to. Assuming you created a system-level ODBC
data source (using the Control Panel’s 32-bit ODBC applet)
called MyDB, the following Delphi code snippet will open the
Connection and store it in an OleVariant variable called Conn:

var
Conn : OleVariant;
CS : string;

...

Cs := 'DSN=MyDB';
Conn := CreateOleObject('ADODB.Connection');
Conn.Open(Cs);

The Connection object can also be used to execute data
provider-specific commands using the Execute method, and
manage transactions using BeginTrans, CommitTrans, and
RollbackTrans.

The Recordset Object
The Recordset object is used to read, update, or clear a set
of records (tabular data). You can think of a Recordset as a
Delphi Table or Query component.

The Open method is used to populate the Recordset object
from the data source. You provide this method with the open
Connection object you retrieved earlier, the SQL statement
that specifies the record selection, and parameters that specify
locking and cursor options.

The following is a Delphi code snippet that selects all the
records in the table MyTable:

var
Rs : OleVariant;
SQL : string;

begin
Rs:= CreateOleObject('ADODB.Recordset');
SQL := 'SELECT * FROM [MyTable]';
Rs.Open(SQL, Conn, 3, 3);

Navigating the Recordset object is done with the Move,
MoveFirst, MoveLast, MoveNext, and MovePrevious methods.

The AddNew method is used to add a new record to the
Recordset, and the Delete method is used to remove records
from the Recordset.

The Fields property of the Recordset object is used to gain
access to the fields of the current record (the record pointed
31 December 1998 Delphi Informant
to by the cursor). These can be used to inspect and update the
values of the specific columns in the record.

The Field Object
A Field object represents a column value in the current row
of a Recordset object. The Field object provides access to the
column’s Name, Type, Attributes, and the Value of the column
in the current Recordset row. If the field represents a BLOb
(Binary) column, the AppendChunk and GetChunk methods
can be used to write or read the binary data.

The code in Figure 1 shows how to update the current row in
the Recordset using the fields collection of FieldObjects. Here, Rs
is an open Recordset object, and FieldNames and FieldValues are
open arrays that hold the names of the columns that need to be
updated and the new values that need to be assigned to them.

For example, if we have a Recordset object called Customers
and we need to update a customer address based on a form
CustomerForm, we could use the following call:

SetCurrentRecordFields(Customers, ['Customer Name',
'Address 1', 'Address 2', 'City', 'Zip', 'Telephone'],
[CustomerForm.Name.Text, CustomerForm.Address1.Text,
CustomerForm.Address2.Text, CustomerForm.City.Text,
CustomerForm.Zip.Text, CustomerForm.Tel.Text];

Additional ADO Objects
ADO includes additional objects that can be used in appli-
cations that access data. These include:

The Command object, which allows you to activate a
data source-specific command.
The Parameter object, which can be used to pass parame-
ters to commands executed with the Command object.
The Error object, which can be used to analyze errors that
happened during your database access or update operations.

Interfacing Delphi ADO Code with ASP
ASP is a great way to write Web applications. You can com-
bine your page layout HTML with logic written in JavaScript
or VBScript, and take advantage of Automation objects.
When you need to perform complicated logic in your ASP
application, scripting is less appealing.

Figure 2: Selecting the data source from the System DSN page
of the 32-bit ODBC applet.

Columns & Rows

Figure 3: The ActiveX page of the New Items dialog box.

Figure 5: The AdoProj type library with the CustomerCount and
Version properties added.

Figure 4: The Delphi Type Library editor displaying the
AdoProj.tlb file.
We can take advantage of Delphi’s ability to create Automation
objects and access the same databases ASP can (using ADO) to
write the complex logic parts of the application in Delphi,
while using ASP for the presentation and light-weight features.

Once you’ve created and compiled your Automation
object in Delphi, you will use ASP’s Server.CreateObject
method to create an instance of the object and use it.

For this article, I created a simple customer database in
Microsoft Access 97 and added it as a System DSN on my
machine. The code archive for this article contains the
pre-defined Access database. (The example Delphi project,
ASP file, and Access database are available for download;
see end of article for details.)

Creating a System DSN
To register the customer database as a System DSN, follow
these steps:
1) Go to Control Panel and activate the ODBC applet.
2) Select the System DSN tab and click the Add button

(see Figure 2).
3) Choose the Access driver and click Finish.
4) At the ODBC setup dialog box, enter DISample as the

Data Source Name.
5) Click the Select button and browse for the

Customers.mdb file that accompanies this article.
6) Click OK twice to close the dialog boxes.

The System DSN, DISample, now points to the sample
database we will use in this article.

Creating a Delphi Automation Object
To create a Delphi Automation object, follow these steps:
1) Create a new ActiveX Library project by selecting

ActiveX Library from the ActiveX page of the New Items
dialog box (see Figure 3), and save it as AdoProj.dpr.

2) Create an Automation object by selecting Automation

Object from the ActiveX page of the New Items dialog box.
32 December 1998 Delphi Informant
3) The Automation Object Wizard will be displayed.
Enter DelphiADO as the Class Name and click OK.
The AdoProj type library (AdoProj.tlb) will be created
and displayed in Delphi’s Type Library editor (see
Figure 4).

4) Close the Type Library editor and save the implemen-
tation unit as ADOObj.pas.

Columns & Rows
You’re now ready to add the methods and properties of the
object. Reopen the Type Library editor by selecting View |

Type Library. Right-click on the IDelphiADO interface and
select New | Property to create a read-only Integer property
named CustomerCount. Delphi will automatically create
get and put methods, so you will need to delete the put
method. Repeat this step to create a WideString read-only
property named Version (see Figure 5).

Click the Type Library editor’s Refresh Implementation but-
ton and enter the functions’ code in the ADOObj unit, as
shown in Figure 6.

We can now compile the object. After compiling, register the
object with the system by selecting Run | Register ActiveX Server.
function TDelphiADO.Get_CustomerCount: Integer;
var

Conn : OleVariant;
Rs : OleVariant;
SQL : string;

begin
Conn := CreateOleObject('ADODB.Connection');
Conn.Open('DSN=DISample');
Rs := CreateOleObject('ADODB.Recordset');
SQL := 'SELECT * FROM [Customers]';
Rs.Open(SQL, Conn, 3, 3);
Result := Rs.RecordCount;
Rs.Close;

end;

function TDelphiADO.Get_Version: WideString;
begin

Result := 'Version 1.0';
end;

Figure 6: The Get_CustomerCount and Get_Version methods.

<%@ Language=VBScript%>
<HTML>
<HEAD>
<META NAME="GENERATOR"

CONTENT="HyperAct eAuthor Help 3.0 Preview 5">
<META HTTP-EQUIV="Content-Type"

CONTENT="text/html; CHARSET=iso-8859-1">
<TITLE>Document Title</TITLE>
</HEAD>
<BODY>
<%

Set DelphiObj = Server.CreateObject("AdoProj.DelphiADO")
%>
<H3>This page provides information gathered from
a Delphi Automation object</H3>

Object Version: <%= DelphiObj.Version %>

<%

Set Conn = Server.CreateObject("ADODB.Connection")
Conn.open "DISample", "", ""
Set Rs = Server.CreateObject("ADODB.Recordset")
Rs.open "SELECT * FROM [Customers]", Conn, 3, 3

%>
Number of records in recordset <%= Rs.RecordCount %>

<%

Counter = DelphiObj.CustomerCount
%>
Number of records reported by Delphi object <%= Counter
%>

End of Story
</BODY></HTML>

Figure 7: The ASP file, MyTest.asp.

33 December 1998 Delphi Informant
Calling the Delphi Object from ASP
To test the object from ASP, you will need to create a vir-
tual directory on your Internet Information Server (IIS)
or Personal Web Server (PWS). Define a virtual directory
named DIADO, and give it read and scripts permissions.
The ASP file shown in Figure 7 needs to be placed in
this directory.

You embed scripts in an ASP page between <% and %>
tags. The ASP Server object is used to start external
Automation objects with the CreateObject method. For our
sample, the following statement will start our object and
assign it to a VBScript variable:

<%
Set DelphiObj = Server.CreateObject("AdoProj.DelphiADO")

%>

The object is identified by the project name, separated by
a dot from the Delphi object name defined when you cre-
ated the object in Delphi. We can now call the object
using the following syntax:

Object Version: <%= DelphiObj.Version %>

Calling the code that accesses the database via ADO is
just as easy:

<% Set Counter = DelphiObj.CustomerCount %>
Number of records reported by Delphi Object <%= Counter %>

This obviously is a very simple use for Delphi accessing
ADO from within an ASP application. It’s so simple that
we can check the results returned by our object with com-
parable code written in pure JScript:

<%
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.open "DISample", "", ""
Set Rs = Server.CreateObject("ADODB.Recordset")
Rs.open "SELECT * FROM [Customers]", Conn, 3, 3

%>
Number of records in recordset <%= Rs.RecordCount %>

Figure 8 shows MyTest.asp at run time.
Figure 8: The results of the MyTest.asp page check.

Columns & Rows
Because you can use JScript to access database sources
using ADO, it doesn’t make sense to use a Delphi
Automation object unless you need to take advantage of
Delphi’s superior power.

If you need to perform complex queries or calculations
from an ASP application, and your project needs access to
an ADO data source, a Delphi Automation object is a
great way to go.

Conclusion
OLEDB and ADO are the new data access kids on the
Microsoft block. While we might not have the easy-to-
use, DB-aware controls that we are used to with Delphi
BDE databases, ADO is here to stay, and in many cases, it
makes sense to familiarize yourself with it.

ASP applications are gaining popularity on Microsoft’s
Web server platforms. The ability to use the same data-
base object model from your scripting code, and your
heavy duty Delphi code, can be yours with Delphi
Automation objects that use ADO to access application
databases. ∆

The projects referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\DEC\DI9812RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead develop-
er of eAuthor Help, HyperAct’s HTML Help authoring tool. For more informa-
tion about HyperAct and eAuthor Help, contact HyperAct at (515) 987-
2910 or visit http://www.hyperact.com.
34 December 1998 Delphi Informant

http://www.hyperact.com

35 December 1998 Delphi Informant

New & Used

By Warren Rachele
SysTools 2
A Treasure Chest for Delphi Developers

Have you ever admired the toolbox lugged around by a handyman? You know,
the huge wooden box that seems to hold just the right tool to solve any

problem. From its inception, the SysTools library from TurboPower Software Co.
has represented just that to Delphi developers. If your project needs a low-level
routine to solve a programming problem, chances are, it’s somewhere in there.
SysTools 2 is the latest release of
TurboPower’s library of system-level routines
and components. This collection of units
and classes differs from other offerings by
TurboPower in that it covers wide-ranging
areas of interest. Other products from the
company focus on clearly delineated areas,
such as communications or databases.
SysTools provides developers with a collec-
tion of highly optimized tools that address
the low-level functions needed to complete
nearly every development effort. The func-
tions save developers from the work of build-
ing their own library of tools, allowing them
instead to focus their efforts on the function-
ality of their application.

Why Get It
The initial reaction of a programmer when
reviewing the functions provided in the
library is often “Why not create this myself?”
The answer comes when you take a long
look at the effort involved in designing and
programming them for your own use.
TurboPower provided an excellent example
in response to the issue. Consider the tasks
involved in changing an integer value to a
string that is properly formatted with com-
mas. The integer value must be converted to
a string and the length determined. Based on
the decimal position, the proper number of
commas needs to be determined and insert-
ed. Finally, if the value was below zero, a
negative sign must be prepended to the
string. Oh, and don’t forget that Delphi sup-
ports a rich variety of string types, and your
function should support all of them.

SysTools provides a ready-made solution to this
and numerous other processes similar to it. The
equivalent process in SysTools would be:

StringVariable := Commaize(intVariable);

In addition to providing useful utility func-
tions, SysTools provides component interface
elements to simplify calling some of the
commonly used, but complex, Windows API
calls. Using the library functions speeds and
simplifies the development process. The
functions in SysTools are written in units
specifically focused on one area of develop-
ment; only the units needed to support the
function you wish to use need to be included
in your program. This prevents the software
bloat associated with unneeded features.

The first version of SysTools garnered much
praise and was rewarded with industry recog-
nition and awards. The TurboPower develop-
ers are not known for resting on their laurels,
and went back to work to provide additional
functionality to the library. Version 2 finds
that completely new units and visual compo-
nents have been added alongside the
improvements made to the original units.

Win32 Shell Tools
The first of the new libraries to be examined
is the Win32 GUI routines. These system-

Figure 1: The DLL Information Viewer.

New & Used

Figure 2: A demonstration program using StDBBarCode.
level components encapsulate many of the common Win32
API shell routines, hiding the messy details and simplifying
their use. The StBrowser component wraps the Windows
shell browser. Property changes allow the programmer to
determine the amount of detail shown in the browser win-
dow, from directries-only to including printers and other
desktop items. To rapidly provide the user with information
about Windows, the StShellAbout component wraps the
Windows shell About dialog box. The user will see the shell
About dialog box, which provides version and memory infor-
mation. The programmer can perform some minimal modifi-
cation to the dialog box to personalize it for the particular
application in which it appears.

The DLL Information Viewer (see Figure 1) puts these com-
ponents to work alongside the StVersionInfo component,
which provides access to the version information stored inside
EXE and DLL files. The Browse button executes the
StBrowser component, allowing the user to select the file’s
directory. Upon selecting the file in the file listbox, the inter-
nal information is gathered by methods of the StVersionInfo
component and displayed in the memo component.

Three components wrap the file operations exposed through
the API. StFormat works only with removable media disk dri-
ves, and displays the Format Drive dialog box on execution.
The dialog box allows the user to adjust the format properties
before starting the process. StFileOperation is a wrapper for
Windows file operations, such as copy, rename, move, and
delete. All confirmations are handled automatically, and the
component works with individual files or entire directories.
The user must provide the source file names and a destina-
tion directory, even if it doesn’t exist. The operation to be
performed is defined internally and is carried out with the
appropriate confirmations. The user is treated to the “paper
storm” animation during the process.

The StDropFiles component is an interface for adding
drag-and-drop capabilities to your application. Adding this
component to your application enables you to identify a
component that becomes a drop destination. The
StDropFiles component populates a string list with the
36 December 1998 Delphi Informant
names and paths of the files that were dropped, exposing
this list through the Files property.

The StShortcut component allows your application to create
Windows shortcuts in numerous possible locations. These
include the Desktop, Start, or Programs menus, or any one of
several other locations in the Windows system. At a mini-
mum, the developer need only set the target file name and a
destination for the shortcut, and call the CreateShortcut
method to use the component. Other options are available,
including a method for resolving shortcuts by returning the
name, working directory, etc.

The last Win32 component is the StTrayIcon. This tool
simplifies the process of creating programs that can reside in
the tray portion of the Taskbar. Depending on the combina-
tion of property choices the developer selects, a variety of
actions can be set for such actions as minimization and a
click on the Close button.

Another visual component, apart from the Win32 calls, is
the Bar Code Builder. It generates, displays, and prints bar
codes in numerous industry-standard formats. The compo-
nent comes in two forms: a static model that handles a sin-
gle code, and a data-aware version that can be linked to a
DataSource component. A demonstration program using
the data-aware version, StDBBarCode, is shown in Figure 2.
The linkage of the bar code to the data field UPC code is
automatic and transparent; as the DBNavigator is used to
step through the records in the table, the bar code automat-
ically reflects the changes in the field, refreshing the compo-
nent display with each change.

Real Business Financial/Statistics Library
New to version 2 is a pair of units that support business
finance and statistics functions. The functions do not replace

New & UsedNew & Used
the Math unit included with Delphi; rather, they offer addi-
tional functionality for your programs. The TurboPower
designers made an excellent implementation decision by bas-
ing them on similar functions in Microsoft Excel, a program
that many computer users are familiar with. The excellent
manual makes the most of this similarity by noting the Excel
function that is closest in functionality to the SysTools func-
tion in the documentation.

The StFin unit provides a wide-ranging collection of finance-
related routines. The unit contains tools for working with
interest calculations, depreciation, the time value of money,
various bond-related calculations, and others. These functions
again point to the value of this package in terms of the time
and effort saved through their use. Think about all the values
necessary for calculating accrued interest. You would need the
issue date, date of maturity, annual rate, a par value, and the
interest payment convention to be used in the calculation.
Each of these elements must be correctly typed and verified
for reasonableness before use. For example, the maturity date
cannot be less than the issue, and the interest rate cannot be
zero or less. This relatively simple calculation could easily
consume a great deal of your time. SysTools handles all data
verification in their highly optimized code, allowing you to
concentrate on producing results.

The StStat unit supplements the Delphi Math unit with 45
additional statistical functions. They cover three general cate-
gories of statistics: general statistical measures, linear regres-
sion modeling, and probability distribution. Again, unless
you are intimately familiar with the mathematics behind the
statistical calculations, it would be easy to become mired in
the creation of these tools, especially from an accuracy stand-
point. In addition, because statistical functions work with
large bodies of data, creating your own functions would
require huge amounts of data and memory management.

Closely related to the finance and statistics functions is
StExpr, a visual component that implements a drop-in
Expression Editor. This unit also supports a vast array of
mathematical functions in 16- and 32-bit versions. The
expression grammar acceptable to the parser closely follows
Pascal rules with regard to precedence and structure, so
adding this functionality into a program should be relatively
easy. While true of all TurboPower products, this component
helps point to a unique advantage of the libraries created by
this company. Because the source code for all the libraries
ships with the package and is clearly commented, the pro-
grammer would be able to quickly implement special-use
functions by extending this unit. The same cannot be said of
binary libraries.

CRC Routines
Cyclic Redundancy Check (CRC) routines give programmers
a tool for detecting errors in arbitrary blocks of data or files.
The need for verification of data increases each day, with data
streams passing through conditions that cannot guarantee the
integrity of the data from one point to another. SysTools con-
37 December 1998 Delphi Informant
tains a unit — StCRC — that provides programmers with
multiple CRC routines — two 16-bit, two 32-bit, and the
Internet Checksum. Whether called in primitive form (low-
level) or with a single parameter passed (which then calls the
primitive functions), the return value of the CRC allows the
programmer to implement a verification routine based on
that value.

Internet Data Conversion Kit
Another unit new to version 2 is the Internet Data
Conversion kit. The StMime unit encapsulates classes that
perform conversion functions on common data formats used
to send binary data across the Internet. The unit handles the
most common formats: Raw, Quoted-Printable, UUEncode,
Base64, and BinHex. If additional formats are required for
your program, the unit is extensible.

Updated Libraries
Nearly every unit in the SysTools library received upgrades
on some level. The rich set of string functions remains
attractive to programmers of all levels. Delphi supports
three flavors of strings: the standard Pascal-length byte
string, the default ANSI string, and the Wide string. The
SysTools library supports all three, providing the identical
function for each, changing the parameters and return types
as appropriate.

The Date and Time unit is equally powerful, addressing the
mathematics of time and date differences, as well as providing
compact storage of the data. The unit gives equally powerful
conversion and formatting routines to the programmer.
SysTools also continues to include the BCD (Binary Coded
Decimal) unit for high-performance, floating-point mathe-
matics. This method of data storage provides accuracy to 18
significant digits.

The StUtils unit is a set of operating system utilities that
provide access to Windows 95/98, DOS, Windows 3.1,
and Windows NT. The routines in this unit supplement
the tools provided with Delphi in the SysUtils unit and
focus on lower-level tasks. Coupled with the operating sys-
tem utilities is StText, a unit that brings the functions asso-
ciated with files viewed as a collection of bytes to text files.
For example, the routines allow for determining the size of
a text file, or returning the file pointer position. A separate
class wraps the API calls necessary to work with INI files or
the registry.

Container classes are routines that support the methods
and data that support programming constructs such as
linked lists, queues, binary trees, and hash tables. SysTools
gives the developer ready-made structures that can be
quickly added to any application. The SysTools implemen-
tations can handle data structures as large as the user’s hard
drive, or the core memory contained in the machine. New
to version 2 is the priority queue class. A priority queue is
a data structure that allows the program to add new items
to the structure and remove the highest valued item. The

New & UsedNew & Used
structure is commonly used
in queuing systems where
highest priority items are
given a higher value. When
the system is looking for
tasks to process, it pulls the
highest value from the struc-
ture. SysTools implements
the structure as a double-
ended heap (deap), giving
additional functionality by
drawing the priority value
from the top or bottom of
the heap.

To simplify the use of these
complex structures and the
functions pointers needed to
support such large data col-
lections, SysTools includes a
set of non-visual container
class components. Dropping
the components into your
application brings with it all

the supporting code necessary with a minimal increase in
overall code size. The components also provide simplified
functional access through the methods included with each
container. A separate class, but one that is functionally
closely linked to the container classes, is also included. This
is a high-performance sort engine capable of sorting up to
2 billion elements, which can be anything from discrete
values, to records or arrays.

Finally, the SysTools library provides a class that supports
astronomical routines. To understand their implementa-
tion, it’s assumed that you are familiar with concepts such
as astronomical coordinate systems and Universal Time.

The Product
SysTools 2 ships on a CD-ROM (along with other
TurboPower products). The accompanying 606-page print-
ed manual is comprehensive and well written. It provides
examples where needed, including full programs demon-
strating the use of non-intuitive classes. Several example
programs that also demonstrate the component or class use
are installed. TurboPower also allows you to perform evalu-
ation installations of their other products from the CD-
ROM that work only within the development environ-
ment. This gives you the opportunity to evaluate other
products at your leisure.

The SysTools package contains complete source for all
classes in the library. The code is very well written and
documented, thus providing the additional benefit of
being an excellent learning tool. The package is royalty-
free; you only pay for the library one time. All versions of
Delphi, as well as C++Builder, are supported in a single
package, so there’s no need to buy separate 16- and 32-bit
libraries.

The first version of SysTools garnered
much praise and recognition, and this
latest release only improves and extends
the practicality of version 1. SysTools
provides a collection of highly optimized
tools that address the low-level func-
tions needed to complete most develop-
ment efforts. The functions save you the
work of building your own library of
tools, allowing you to focus your efforts
on the functionality of your application.

TurboPower Software Co.
PO Box 49009
Colorado Springs, CO 80949-9009

Phone: (800) 333-4160
Fax: (719) 260-7151
E-Mail: order@turbopower.com
Web Site: http://www.turbopower.com
Price: US$199
38 December 1998 Delphi Informant
Conclusion
As with all TurboPower products, the SysTools library is well
executed and implemented. The wide range of functionality
is sure to provide the answer to many programming situa-
tions you’ll face. The functions are rock-solid, gracefully han-
dling all exceptions caused during testing. Using the routines
supplied by the package will save the typical programmer
immense amounts of development that can be directly
applied to the high-level functionality of the program.
Regardless of their focus, Delphi developers should have this
library in their toolbox. ∆

Warren Rachele is Chief Architect of The Hunter Group, an Evergreen, CO soft-
ware development company specializing in database-management software.
The company has served its customers since 1987. Warren also teaches pro-
gramming, hardware architecture, and database management at the college
level. He can be reached by e-mail at wrachele@earthlink.net, or by tele-
phone at (303) 674-8095.

http://www.turbopower.com

39 December 1998 Delphi Informant

New & Used

By Bill Todd

Figure 1: The InfoPower
component with week nu
InfoPower 4.0
Woll2Woll’s Must-have Add-in Gets Better

InfoPower 4.0 adds a host of new features to an already outstanding set of
Delphi database tools. For example, two new calendar controls,

wwDBDateTimePicker and wwDBMonthCalendar, resemble their non-data-
aware ancestors from the Win32 page of the Delphi Component palette, but
feature many additional capabilities.
The wwDBDateTimePicker component can
be embedded in the InfoPower wwDBGrid
component (see Figure 1), and is also used
for date fields in the wwRecordView and
wwFilterDialog components. It can also be
used without a DataSource and allows entry
of date and time in a single control. When
entering a date, the cursor automatically
advances when enough characters are
entered; today’s date can be entered by tap-
ping the space bar. You can display dates in
your choice of formats using the
DisplayFormat property, or the system long
or short date formats.

The wwDBDateTimePicker component also
includes an Epoch property, which controls
how dates entered with a two-digit year will
be treated. The default Epoch value is 1950,

so all dates with a year
less than 50 will be
assigned to the twenty-
first century. There are
also many options for
controlling the infor-
mation displayed in
the calendar. For
example, the calendar
in Figure 1 has the first
day of the week set to
Thursday, and the
week number dis-
played to the left of
each week. To control
which days are shown

wwDBDateTimePicker
mber displayed.
in bold, simply create an event handler for
the OnCalcBoldDay event. Setting the
MultiSelect property to True lets users select a
range of dates using the keyboard or mouse.
The wwDBMonthCalendar component lets
you drop a calendar on a form, so the entire
calendar is always in view. It includes all the
features of wwDBDateTimePicker, plus the
ability to show multiple months simultaneous-
ly. Figure 2 shows wwDBMonthCalendar on a
form displaying six months with a range of
dates selected.

wwDBRichEdit Enhancements
The wwDBRichEdit control, introduced in
version 3.0, has also been enhanced with new
features, including bitmap and OLE support.
Bitmaps and OLE objects can now be
embedded into your rich text documents
(RTFs) and saved in your database. URLs are
also supported in two ways. Any URL in the
document will appear underlined, and dou-
ble-clicking the URL will start your Web
browser and open the link.

There is also a new pop-up paragraph ruler to
quickly set margins and indentations in your
RTF documents. Multi-level undo and redo
has also been added to let you easily undo or
redo a series of actions. User-definable speed
buttons let you add custom functions, such as
saving the document to a file or calling a
spelling checker. Also, InfoPower’s search and
filter components will now work on the con-
tents of RTF fields.

Figure 2: The wwDBMonthCalendar component showing
six months and a selected date range.

Figure 3: The InfoPower wwDBGrid component with bitmaps
and footer cells.

New & Used
The wwDBRichEdit component includes an outstanding RTF
word processor. Users simply right-click the rich edit compo-
nent and choose Edit to display a full WordPad-like RTF word
processor. Users are able to: set font styles and sizes, italics,
colors, paragraph alignment, margins, indents and spacing,
any number of tabs and their positions, and bold and under-
line; create bulleted lists; and embed graphics or OLE
objects. Printer-support options let users set the paper size,
orientation, and printer margins.

New Grid Features
One of the jewels of InfoPower since version 1.0 has been its
powerful data-aware grid component, wwDBGrid, which fea-
tures many enhancements in version 4. You can now display a
cell in the grid as a normal edit box, checkbox, combo box,
spin edit, date time picker, bitmap, lookup combo box, or a
custom edit box. Footer cells can be added to the bottom of
the grid to provide a convenient place to display column sum-
mary information. Footer cells do not scroll with the grid, so
the information they contain is always visible. Because you
control which columns have footer cells, they only appear for
those columns that have summary information to display.

The ImageList component is now supported as a source for
bitmaps to display in column headings or in grid cells.
Perhaps the most important new features for developers are
the additional events; OnCellChanged, OnRowChanged,
OnDrawTitleCell, and OnDrawFooterCell make it easier than
ever to customize the appearance and behavior of the grid.
Figure 3 shows an InfoPower grid that displays bitmaps in
cells and footer cells to show column totals.

InfoPower’s grid continues to support many other great fea-
tures not found in the standard Delphi grid, such as scalable
row heights with word-wrap within cells, rich text display
within the grid, and InfoPower’s picture masks to control
editing within a cell. The column headers can serve as but-
tons and will depress when clicked. By creating an
OnTitleButtonClicked event handler, you can perform any
function you wish when the user clicks a column title. You
also have complete control over the appearance of column
titles. You can justify the text left, right, or center, set the
number of lines, and control the colors.
40 December 1998 Delphi Informant
The wwDBGrid component also supports smart key map-
ping. By changing a single property, you can cause the grid to
treat R as T. Properties also let you control whether
CD deletes a record, and Z inserts a record. The grid
also lets you edit calculated and lookup fields with just a few
lines of code. Another particularly handy feature is the ability
to embed a speed button at the top of the grid’s indicator col-
umn. This is particularly useful for calling the InfoPower
wwRecordViewDialog component.

The wwRecordViewDialog component automatically gener-
ates a form that contains appropriate field objects to view a
single record in a dataset. It’s particularly useful in conjuntion
with a grid to give users an easy way to display and edit all
the fields of the current record. For example, using the
InfoPower grid, Lookup combo box, and Record View dialog
box, it’s easy to build a generic lookup table editing form that
allows the user to select a lookup table from the combo box,
view, and edit it in the grid, or click a button and pop up the
Record View dialog box showing the current record.

New in version 4 is the wwRecordViewPanel component. It
provides the same features as
wwRecordViewDialog, but can
be dropped onto your form to
add dynamic generation of sin-
gle record editing controls.

A Better Navigator
Another great new component
in InfoPower 4.0 is defined by
wwDBNavigator. The
InfoPower navigator supports
adding buttons and custom
icons to the standard
DBNavigator set. It even
includes icons for common
functions, such as setting a
bookmark, going to a book-
mark, InfoPower dialog boxes,
and page up/page down. Figure
4 shows one of the forms from
the InfoPower demonstration
program with all these buttons
and icons added to the navigator.

InfoPower 4.0 adds a host of features to
an already outstanding set of Delphi data-
base tools. InfoPower components make
any database application — desktop,
client/server, or multi-tier — more power-
ful and easier to develop. InfoPower 4.0
Professional supports Delphi 3 and 4. The
professional version also includes
C++Builder 3 support, complete source
code for all InfoPower components, and
InfoPower 3 for compatibility with Delphi
1 and 2.

Woll2Woll Software
2217 Rhone Drive
Livermore, CA 94550

Voice: (925) 371-1663
Fax: (925) 371-1664
Web Site: http://www.woll2woll.com
E-Mail: sales@woll2woll.com
Price: InfoPower 4.0 Professional,
US$299; upgrade, US$129; InfoPower 4.0
Standard for Delphi 3 and 4, US$199;
upgrade, US$99.

http://www.woll2woll.com

Figure 4: The InfoPower wwDBNavigator component with added
buttons and icons.

Figure 5: Various wwDBNavigator layouts.

New & Used

Figure 6: The wwFilterDialog component in action.
Adding buttons to the navigator not only lets you access other
InfoPower features, but call your own code as well.

You can also arrange the navigator to suit your form geom-
etry by displaying it horizontally, vertically, or with multi-
ple rows. Figure 5 shows several possible navigator layouts.
Adding buttons to the navigator is a snap using the
InfoPower collection editor; select the navigator’s Buttons
property in the Object Inspector, click its ellipsis button
and the collection editor appears. You can add and delete
buttons, and select individual ones to set their properties
in the Object Inspector. The collection editor also lets you
rearrange the buttons within the navigator.

Finding Data
InfoPower provides a complete suite of controls for
finding data, starting with the wwFilterDialog component
(see Figure 6). wwFilterDialog works with tables, queries, and
ClientDataSet events to let users filter their view of data.
When filtering a query, you also have the option to let the
database server perform the filter instead of fetching all the
data and performing the filter on the user’s workstations. The
filter can encompass any number of columns and supports
matching on single values or a range of values.

Filters on columns can be logically connected using AND
or OR. When searching for a single value in a column,
you can specify an exact match, starts with, or search for
the value anywhere in the columns text. You can also con-
trol if the match is case-sensitive, and you can give the
user the ability to logically invert the search and see all the
records that don’t match the specified criteria. Users can
even filter on lookup fields.

Other search components include wwLocateDialog,
wwSearchDialog, and wwIncrementalSearch.
wwLocateDialog lets a user easily search for a value in a
column using exact match, starts with, or is contained in
options. The user can also control the case sensitivity of
the search and use wild cards in the search string. The
Find First and Find Next buttons let a user easily step
through the records that match the search criteria.

The wwIncrementalSearch component looks like an edit
box, but provides incremental searching on a single field in a
41 December 1998 Delphi Informant
dataset. As the user types each succeeding letter, the dataset is
dynamically repositioned to the first records that match the
characters currently typed. The wwSearchDialog component
also provides incremental searching, but in a dialog box that
displays the dataset being searched in a grid. The user can
choose which field to search, and the dialog box can contain a
user-defined button that lets you add custom features.

Another related component is wwKeyCombo. This control has
been enhanced in InfoPower 4.0 to allow users to incrementally
search on, or sort by, any column in a ClientDataSet.

Other Features
InfoPower also includes the wwTable, wwQuery, wwQBE, and
wwClientDataSet components, which add powerful filtering
capabilities. The wwQBE component is particularly handy for
applications that use local Paradox or dBASE tables, since QBE
queries frequently execute faster than SQL queries.

All InfoPower components also support InfoPower’s picture
masks. Picture masks are what Delphi’s edit masks should
have been — a very powerful template system for controlling
what a user can enter into a field and how it’s displayed.

InfoPower didn’t forget the international developer. The wwIntl
component contains all the strings used by the other compo-
nents and provides an easy, centralized location to translate the
InfoPower component suite into another language.

InfoPower has always been known for its excellent docu-
mentation, and version 4 continues that tradition. In addition
to complete online help, version 4 comes with a 258-page

New & Used
manual. All the properties, methods, and events are clearly
described, and code samples are provided where necessary.

Conclusion
If I could only have one Delphi add-in, it would be InfoPower.
The InfoPower components make any database application more
powerful and easier to develop — whether it uses local tables, or
is a client/server or multi-tier application. I haven’t seen any
other tool set that allows you to give users more features with less
effort. With version 4, InfoPower retains its well-deserved posi-
tion as the “must have” Delphi add-in. ∆

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. A Contributing Editor to Delphi
Informant, he is also co-author of four database programming books, the
author of over 60 articles, and a member of Team Borland, providing technical
support on the Inprise Internet newsgroups. Bill is a frequent speaker at Inprise
conferences in the US and Europe. He is also a nationally known trainer and
has taught Paradox and Delphi programming classes across the country and
overseas. He was an instructor on the 1995, 1996, and 1997
Borland/Softbite Delphi World Tours. He can be reached at bill@dbginc.com
or (602) 802-0178.
42 December 1998 Delphi Informant

TextFile

SAMS Teach Yourself Borland Delphi 4 in 21 Days

SAMS Teach Yourself Borland
Delphi 4 in 21 Days applies
the same concept as the rest
of SAMS’ “Teach Yourself ”
series. A set of daily lessons
will transform you into a
<insert tool> programmer in
x number of days. From a
pure language standpoint,
this might be a reasonable
expectation, but Delphi isn’t
just an Object Pascal imple-
mentation. It’s a complete
visual development environ-
ment, with scores of compo-
nents, a complete database,
etc. It’s just not fair to expect
a reader to gain even a rea-
sonable level of competence
with such a product after 21
daily lessons.

The most positive aspect of
this book is that it provides a
thorough survey of the
Delphi development envi-
ronment. The author, Kent
Reisdorph, passes up no
opportunity to show what
Delphi can do, providing
coverage to such wide rang-
ing topics as an introduction
to the IDE, graphics and
multimedia programming,
COM and ActiveX controls,
and a compare-and-contrast
piece on Delphi and
C++Builder. This book is an
excellent choice for the pro-
grammer who is trying to
43 December 1998 Delphi Informant
determine if Delphi is the
appropriate tool for a pro-
ject. There is just enough
material here to give one an
adequate taste of the capabil-
ities of the tool.

There are some excellent
chapters, with the best con-
centrated in the week three
segment. Day 19, for exam-
ple, focuses on “Creating
and Using DLLs,” and the
author does an excellent job
of explaining these executa-
bles to the reader. He
defines the term and
explains why it should be
considered over other
options. The topic is
demonstrated with a sim-
ple, yet effective project
that gives the reader a good
look at the process of load-
ing and calling a function
from within a DLL. He
also does a good job of
explaining the differences
in requirements for using
static vs. dynamic loading.

Another excellent chapter
delves into COM and
ActiveX, and would make a
good stand-alone article on
the topic. Reisdorph’s writ-
ing brings the reader along
slowly to a point at which,
using the Delphi Wizards
and IDE tools, the develop-
er has a fundamental
understanding of these
objects. Two basic demon-
stration projects are includ-
ed with the chapter.

The third gem in the final
week’s section deals with
component creation. While
experienced developers
know this is no trivial
topic, the author shines by
making a complex subject
accessible. A simple control
is derived that points out
most of the basic pieces
necessary to build a compo-
nent. The reader may still
not be prepared to develop
a library of commercial
class components, but some
ideas for expanding the
stock VCL components
should come across.

A project called Scratch Pad, a
simple editor, was started in
the week one section. This
project is used throughout the
book to demonstrate different
techniques used in building a
complete application. So
many books push the reader
from one demonstration pro-
ject to the next. By sticking
with a single project that
grows to include newly devel-
oped skills, the reader gets a
much better sense of the pro-
gram construction practice.
Two chapters demonstrate
the strength of Delphi quite
well. The first is a chapter
that delves into the debug-
ging facilities of the IDE, a
topic that usually receives
short shrift. The author
guides us through the stan-
dard break-point debugging
process and points out the
useful features of ToolTip
Expression Evaluation. In
addition, he provides some
hints for resolving common
application errors, some of
which may have driven the
developer to the debugger in
the first place.

Another outstanding entry is
the chapter dealing with the
variety of tools and options
provided with Delphi. This
chapter covers such wide-
ranging topics as using
WinSight and the Image
Editor. It also discusses the

TextFile
Windows Messaging System,
the Package Collection
Editor, and various Delphi
environment options. This
might seem like a lot of
ground to cover in a single
chapter, but the author care-
fully sticks to high-level
descriptions of the tools.
There is just enough here to
make the developer aware of
the tool’s availability and its
usage, while in-depth expla-
nations are left to the prod-
uct documentation.

Unfortunately, the reader
may never arrive at these
chapters, having given up
trying to wade through the
initial pages of the book. In
the first 126 pages of this
918-page book, the author
attempts to cover the entire
breadth of Object Pascal,
44 December 1998 Delphi Informant
control structures, classes,
and object-oriented pro-
gramming. Entire books
have been devoted to these
topics, and this presenta-
tion just doesn’t do them
justice. Rather than build a
project that adds incremen-
tally with each new con-
cept, these topics are pre-
sented in snippet form,
making it difficult to asso-
ciate the items with one
another.

These opening chapters are
also rife with forward refer-
encing. Reisdorph references
a topic, usually more
advanced than what belongs
in the current context, then
states that it will be covered
in later chapters. This makes
for a frustrating read and, at
the pace of the chapters,
many readers will give up.
The presentation order of
the material could also use a
bit of the editor’s pen. A
beginning programmer, this
book’s intended audience,
should not be introduced to
things such as pointers or
the heap until they have a
better concept of the pro-
gram execution process. The
first couple of chapters leave
the reader with the impres-
sion of a book that is hap-
hazard and uneven. They
are rewarded for persevering
and getting to the later
chapters, but some may sur-
render.

Overall, SAMS Teach Yourself
Borland Delphi 4 in 21 Days
is a good introductory text to
the Delphi development
tool. Version 4 features are
well covered and a program-
mer spending some time
going through the materials
and reviewing the excellent
quiz and exercise sections
provided at the end of each
chapter will come away with
a good understanding of the
capabilities of the environ-
ment.

— Warren Rachele

SAMS Teach Yourself
Borland Delphi 4 in 21
Days by Kent Reisdorph,
SAMS Publishing, 201 West
103rd St., Indianapolis, IN
46290, http://www.sams
publishing.com.

ISBN: 0-672-31286-7
Price: US$39.99 (918 pages)

http://www.samspublishing.com
http://www.samspublishing.com

4

TextFile
I’m sure many of you have read one of the
earlier editions of this popular guide,
either for Delphi 1 or Delphi 2 (no
Delphi 3 edition was published). One of
the factors that puts this book in a special
category is the background of the authors,
Steve Teixeira and Xavier Pacheco. Both
have worked for Inprise (Teixeira still does
as a Research and Development engineer);
they are thus able to bring the insightful
perspective of the “insider” to this work.
This quality is particularly evident in the
plethora of valuable tips. As we’ll see,
however, the value of this book goes
much further than its helpful suggestions
and exposure of hidden traps.

Developer’s Guide is divided into five parts.
The first, “Essentials for Rapid
Development,” is an introduction to
Windows programming with Delphi 4. I
found the chapter on Object Pascal par-
ticularly valuable. For developers moving
to Delphi from Visual Basic, C++, or
another language, it provides an excellent
introduction to Delphi’s underlying lan-
guage. More importantly, for experienced
Delphi developers it provides a valuable
overview of the extensions to the language
introduced in Delphi 4: the new types,
dynamic arrays, and function overloading.
The chapter on “Application Frameworks
and Design Concepts” gives novice
Windows programmers a succinct
overview of essential techniques and con-
ventions.

Part Two, “Advanced Techniques,”
includes chapters on graphics program-
ming, printing, working with files, and
MDI applications, all in Adobe Acrobat
format on the CD-ROM that accompa-
nies the book. The obligatory chapters on
dynamic link libraries and multithreading
are among the best I have seen — and
I’ve seen some excellent ones. The tips
and insider information in these chapters
will be of value, even to advanced Delphi

Delphi 4 Developer’s Guide
5 December 1998 Delphi Informant
developers. In this part, I was particularly
impressed with the chapters entitled
“Hard-Core Techniques” and “Snooping
System Information,” which broached
such topics as using hook functions,
incorporating assembler code, and obtain-
ing system information.

Part Three provides an overview of the
Visual Component Library and covers
many component-writing topics, includ-
ing writing component editors, working
with packages, and using the TCollection
class in building a component. I’ve been
waiting for someone to tackle this latter
topic in this way for a long time. Bravo! If
you are interested in working with OLE,
COM, or ActiveX, you should find the
chapter “COM and ActiveX” to be an
excellent introduction. This is followed by
a 70-page demonstration showing how to
build an ActiveX control.

Part Four, which deals with database pro-
gramming, follows the pattern established
in the earlier sections, going well beyond
the usual topics. While it includes the
expected topics of working with TTable,
TQuery, and TStoredProc, it includes
exciting excursions into client/server pro-
gramming and Internet database issues.
The chapter on “Extending Database
VCL” is particularly exciting. Here, the
authors provide advice on working with
the BDE, issues related to Paradox and
dBASE tables, and writing data-aware
controls. Overall, I haven’t seen a better
introduction to Delphi database develop-
ment in a general Delphi work.

Part Five, “Rapid Database Application
Development,” goes further into the
realm of Delphi database development.
Among other things, it provides a solid
model of building a client/server appli-
cation and a fascinating desktop appli-
cation. The latter, a “Bug Reporting
Tool,” while not necessarily including
all the functionality you might want
(the authors point this out), provides an
excellent example of how to build a
database application that can be
deployed on the Web with a minimum
of problems.

These days I am more interested in spe-
cialized Delphi books rather than gener-
al encyclopedias. This book, however, is
an exception. Its more than 1,000 pages
of text (with 500 more in additional
chapters on the CD-ROM) provide a
wealth of information from two leading
Delphi experts. If any of the topics I
have outlined above are on your list of
“new Delphi directions,” I suggest you
give this wonderful treatise serious con-
sideration. Delphi 4 Developer’s Guide
should become an important part of
many Delphi libraries.

— Alan C. Moore, Ph.D.

Delphi 4 Developer’s Guide by Steve
Teixeira and Xavier Pacheco, SAMS, 201
West 103rd Street, Indianapolis, IN
46290, http://www.samspublishing.com.

ISBN: 0-672-31284-0
Price: US$59.99
(1,185 pages, CD-ROM)

http://www.samspublishing.com

From the Trenches
Directions / Commentary
What Does Vendor Certification Really Mean?

That’s the question being asked more and more as the marketplace becomes inundated with vendor
certification programs. CNE (Certified Novell Engineer), MCSD (Microsoft Certified Systems Developer),

SCJP (Sun Certified Java Programmer), OCP (Oracle Certified Professional), SCP (Sybase Certified
Professional), and BCD (Borland Certified Developer) are just a few of the acronyms professional program-
mers can add to the end of their names.
But what do they mean? A cynic
believes certification is just another
profit center for vendors. The naïf
accepts vendor certification as a reli-
able indicator that certified persons
excel at the subject for which they are
certified. Realistically, the answer lies
somewhere in between.

As someone who’s gone down the cer-
tification road several times, I believe
you need to examine your motivations
for being certified. If it’s simply for the
money, you will be sorely disappoint-
ed; the time spent pursuing certifica-
tion is rarely fully compensated. And
depending on what certification you
want, there may be a considerable
number of people already certified in
that subject area.

So why go through with it? You may
want to consider certification as a way
to keep pace with your technological
peers. I suppose that’s a fancy way to
say “If everyone jumped off a bridge,
would you?” In this case, jumping off
the bridge isn’t self-destructive; it’s
something you do just to keep up.

Becoming certified means you have a
certain amount of product knowledge.
It does not necessarily make you a
better programmer. It does demonstrate
motivation, initiative, and perseverance
— all good traits for a programmer to
possess. Once you’ve achieved certifica-
tion, you can congratulate yourself on
a job well done — many people fall by
the wayside during the certification
process.

Applicants must have ... However, cer-
tification is not the sole barometer of
46 December 1998 Delphi Informant
your desirability to an employer. As an
employer, it’s probably best to view a
certification as a bonus attribute of a
candidate, rather than as a necessity.
For one, many exam questions are
poorly written. Microsoft especially is
infamous for questions like this:

Given the following solution/code,
how well does it work?
A) Perfect
B) Pretty good
C) Somewhat good
D) Not so good
E) It doesn’t work

Questions such as these are difficult to
answer “correctly.”

There are other reasons why certifica-
tion isn’t a reliable indicator of a pro-
grammer’s skills. Some people simply
don’t take exams well. Also, I don’t
know of a single certification program
where you’re “on your own,” i.e. with-
out the ability to consult manuals,
examples, existing code, or other peo-
ple while taking the test. Therefore,
some exams only test a person’s ability
to gather facts quickly and accurately.
Which isn’t a bad characteristic for a
programmer to have. Perhaps that’s
why the certification programs are
designed that way (although I doubt
it). In today’s fast-paced world of
evolving technology, it’s much better
to be able to adapt and know how and
where to find answers.

Quality software development requires
more than product knowledge, howev-
er. Design, planning, and implementa-
tion acumen are also important, and
most certification exams do not test
for such skills. For example, none of
the tests I’ve seen pose the following
scenario: “Here’s a specification. Please
write an application that meets these
requirements in a timely manner. For
extra credit, design the application to
allow easy maintenance and maximum
flexibility for enhancements.”

It’s not enough. Being certified is
rarely enough; other factors, such as
college degrees, and — especially —
experience must enter into the equa-
tion when evaluating a candidate.
Some of the best developers have never
been certified; they’re too busy deliver-
ing applications.

All this said, I think certification is
valuable. The Delphi certification —
Inprise currently offers the “Delphi 3
Client/Server Suite Certification Exam”
— has been a historically difficult exam,
but that makes the accomplishment that
much more worthwhile and valuable.
You can find out more about the Inprise
certification options for Delphi and
JBuilder at http://www.inprise.com/
programs/certify. ∆

— Dan Miser

Dan Miser is a consultant who lives in
Milwaukee with his wife and daughter.
He is active on the newsgroups, where
he serves as a member of TeamB. He has
been a Borland Certified Delphi
Developer since 1996 and recently
obtained his MCSD certification. Dan
is a frequent contributor to Delphi
Informant. You can contact him at
http://www.execpc.com/~dmiser.

http://www.inprise.com/program/certify
http://www.inprise.com/program/certify
http://www.execpc.com/~dmiser

File | New
Directions / Commentary
Delphi 3 Book Wrap-Up

Now that Delphi 4 has shipped, it’s time to review the outstanding collection of Delphi 3 books. You might
be thinking, “With Delphi 4 now available, shouldn’t I wait for the new crop of Delphi 4 books?” First,

much of the information in the earlier books is relevant to Delphi 4. Plus, you might find some real bargains.
How should we group these works?
Some are general, covering a wide variety
of topics. These fall into two categories:
entry-level and advanced. Others are ref-
erences that aren’t meant to be read cover
to cover. Finally, there are focussed works
of interest to particular developers.

Let’s start with the general books. The
entry-level works differ from the more
advanced in one key respect: They
describe the Delphi IDE and introduce
the VCL. Two of the best in this catego-
ry are Mastering Delphi 3 [SYBEX,
1997] by Marco Cantù and Special
Edition Using Delphi 3 [QUE, 1997] by
Todd Miller, et al. Cantù’s Mastering is
still the best introduction to Delphi.
Using Delphi 3 also has a great deal of
merit, with excellent chapters on using
threads and working with dynamic link
libraries. Both cover essential topics, and
provide excellent introductions to work-
ing with databases in Delphi.

Three general, advanced books worth
considering are Delphi Developer’s
Handbook [SYBEX, 1998] by Marco
Cantù, Tim Gooch, and John F. Lam;
High Performance Delphi 3 Programming
— the new incarnation of the KickAss
series — [Coriolis Group Books, 1997]
by Don Taylor, et al.; and Collaborative
Computing with Delphi 3 [Wordware
Publishing, 1998] by James Callan.
While the latter stresses working with
databases and within client/server envi-
ronments, the other two cover a wide
range of topics. If you’re a regular reader
of Delphi Informant, you’re no doubt
familiar with the fine work that John
Penman has done in exploring Winsock.
High Performance includes some of his
early work in this field. My favorite is
Delphi Developer’s Handbook. It explores
topics that are seldom broached, and
47 December 1998 Delphi Informant
engages in some righteous hacking of
the Delphi environment.

Among the specialized Delphi offerings,
Ray Konopka’s work on writing compo-
nents has earned a place among Delphi
classics. Its successor, Developing Custom
Delphi 3 Components [Coriolis Group
Books, 1997], with its thoughtful treat-
ment of packages and new Delphi 3 fea-
tures, continues to be the best introduc-
tion of this topic. Ray Lischner’s Hidden
Paths of Delphi 3 [Informant Press,
1997] is another essential work. I know
of no other work (with the possible
exception of Lischner’s other volume,
Secrets of Delphi 2 [Waite Group Press,
1996]) that digs deeper into Delphi’s
innards, exposing myriad undocumented
features. Finally, Learn Graphics File
Programming with Delphi 3 [Wordware
Publishing, 1998] by Derek Benner,
explores the graphics file formats avail-
able in Windows. Beginning with an
excellent introduction to graphics pro-
gramming and the .BMP format, it
explores .TGA, .PCX, .GIF, and several
other file formats. With the expanding
number of Delphi developers and the
sophisticated knowledge base of the
established Delphi community, I antici-
pate an even larger crop of advanced and
specialized works in the coming year.

We were also treated to some excellent
Delphi 3 references. Of these, The Tomes
of Delphi 3: Win32 Core API and The
Tomes of Delphi 3: Win32 Graphical API
[Wordware Publishing, 1998] by John
Ayers, et al. deserve special mention. The
former, which covers the Windows API
in great depth, is a milestone in Delphi
publishing. The latter, which deals with
the Graphical Device Interface, is equally
as thorough. I recommend these volumes
for any developer working extensively
with the Windows API. Nathan Wallace’s
Delphi 3 Example Book [Wordware
Publishing, 1998] is another valuable ref-
erence. While the Tomes pair covers the
Windows API, Wallace’s volume covers
the Delphi VCL in similar detail. All
three include excellent code examples.

Before closing, I want to revisit two
Delphi 2 classics: Lischner’s Secrets of
Delphi 2 and Neil Rubenking’s Delphi
Programming Problem Solver [IDG
Books Worldwide, 1997]. Secrets contin-
ues to rank among my all-time favorites,
covering certain topics in greater depth
and clarity than I’ve found anywhere
else. Rubenking’s work is insightful, and
its wealth of useful tips is impressive.
Both continue to be quoted and recom-
mended on Internet discussion groups.
And both provide useful information on
the differences between 16- and 32-bit
Delphi programming.

I’ve not included every Delphi 3 book.
Some I would not recommend, and there
are probably one or two I haven’t seen.
Most of these have been reviewed in
Delphi Informant; refer to those reviews
for more information. If you’re about to
shop for Delphi 2 and 3 book bargains, I
hope these summaries will be useful.

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number
of articles in various technical journals.
Using Delphi, he specializes in writing cus-
tom components and implementing multi-
media capabilities in applications, particu-
larly sound and music. You can reach Alan
on the Internet at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	DT Software Releases Version 5.1 of dtSearch Text Retrieval Engine
	Raize Software Announces CodeSite 1.1
	Dalco Announces dbOvernet
	ZieglerSoft Announces ZieglerCollection one Version 1.40
	CNS Introduces The InterCom System
	Objective Releases Version 4 of ABC for Delphi
	UnitOOPS Announces OLE Drag and Drop Components
	Brickhouse Launches Brickhouse Object Architecture
	Elevate Software Announces DBISAM Database System for Delphi
	Kinetic Announces CrackerJax

	Newsline
	Web Broker Available for Delphi 4
	Inprise Announces Additional Stock Buy-Back Program
	Inprise Announces DCE-CORBA Bridge
	Philips Uses VisiBroker to Make MIRACLE
	Raize Software Acquires VisualPROS

	On the Cover: MTS Development
	The Problem
	The Solution
	The MTS Philosophy
	Anatomy of an MTS Object
	MTS Installation
	The Component
	Installing the Component
	The Client
	Conclusion

	Informant Spotlight: Delhpi Plug-Ins
	Getting Started
	Building the Plug-in
	Debugging
	Extending the Parent
	Event-driven Plug-ins
	Conclusion

	Algorithms: As the Crow Flies
	The Big Picture
	Label Setting
	Setting an Example
	Delphi Details
	Label Correcting
	Conclusion
	Listing One — Label Setting
	Listing Two — Label Correcting

	DBNavigator: Delphi Database Development Part IV
	The Data Module Defined
	Using a Data Module
	Sharing Data Using a Data Module
	Should You Always Use a Data Module?
	When Should You Use a Data Module?
	When Should You Avoid Data Modules?
	Conclusion

	Columns & Rows; Much ADO about the Web
	The ADO Object Hierarchy
	The ConnectionObject
	The RecordsetObject
	The Field Object
	Additional ADO Objects
	Interfacing Delphi ADO Code with ASP
	Creating a System DSN
	Creating a Delphi AutomationObject
	Calling the Delphi Object from ASP
	Conclusion

	New & Used: SysTools 2
	Why Get It
	Win32 Shell Tools
	Real Business Financial/Statistics Library
	CRC Routines
	Internet Data Conversion Kit
	Updated Libraries
	The Product
	Conclusion

	New & Used - InfoPower 4.0
	wwDBRichEdit Enhancements
	New Grid Features
	A Better Navigator
	Finding Data
	Other Features
	Conclusion

	TextFile - SAMS Teach Yourself Borland Delphi 4 in 21 Days
	TextFile - Delphi 4 Developer's Guide
	From the Trenches: What Does Vendor Certification Really Mean?
	File I New: Delphi 3 Book Wrap-Up

